LoRA、Prompt…,在AI圈外也必须要知道的几个新词

文章介绍了AI领域的几个关键概念,包括LoRA——一种降低大语言模型微调成本的技术;Checkpoint——模型训练的状态快照,可用作风格滤镜;embedding——将输入数据转换为向量表示的组件;fine-tuning——基于预训练模型进行微调的方法;以及Prompt——指导模型任务的提示机制。了解这些术语,有助于在讨论AI时展现专业素养。
摘要由CSDN通过智能技术生成

如果说2023年什么最火,AI是当仁不让的第一。和AI有关的一切:AI聊天、语音、绘画、视频…刷爆了所有我们能接触到的社交媒体和新闻渠道。

ChatGPT虽然很有武德,把其他热点也总结了出来,但还是悄咪咪地把人工智能放到了第一位。

但对非程序员群体来说,AI是有门槛的,至少现阶段是。即便不去使用,只是想和朋友同事聊聊这AI盛世,但好像只聊抖音上AI生成的小姐姐,也略显不上档次,格调不足。

那么如何在聊天中脱颖而出、引领话题,既能彰显学识渊博,又能点到即止,深藏功与名?很简单,学会这几个AI圈最火的单词,快速让你成为人群中最亮的那颗星。

01、LoRA

LoRA的全称是LoRA: Low-Rank Adaptation of Large Language Models。是一种轻量化的模型微调训练方法。

大语言模型一般拥有巨大参数量,如GPT-3有1750亿参数,如果这时需要让GPT学习某个特定领域的内容,就需要对大语言模型做微调,但如果直接对GPT-3做微调,因其巨大的参数量,每项微调都会产生巨大的成本和工作量。

LoRA的作用在此时显现,LoRA冻结了预训练模型的权重,并在每个 Transformer 块中注入可训练层,因为不需要大多数模型参与计算,所以大大降低了需要训练的参数量和对GPU硬件的要求。

简单来说,为了避免所有对大语言模型的训练都要调用所有参数,LoRA剥离出需要参与训练的部分,并只对这部分进行修改,大语言模型中的其他部分保持不动,从而降低了工程量和成本。

尽管 LoRA 最初是为大模型提出的,但该技术也可以应用于其他地方,比如近期大火的AI绘画中。

比如在Stable Diffusion中,LoRA使对Stable Diffusion微调工作变得简单且安全,并带来了这些好处:

  • 更快的训练速度

  • 计算要求较低。可以在具有 11 GB VRAM 的 2080 Ti 中创建一个全微调模型!

  • 小了很多的训练模型。

结果是,现在任何人都可以到C站,即https://civitai.com/,下载一个LoRA模型,生成自己喜欢风格的小姐姐。

02、Checkpoint

对于模型作者而言,训练模型通常指生成 Checkpoint 文件。这些文件包含了模型参数和优化器状态等信息,是训练过程中定期保存的状态快照。

对于使用者而言,可以将 Checkpoint 文件理解为一种风格滤镜,例如油画、漫画、写实风等。通过选择对应的 Checkpoint 文件,您可以将 Stable Diffusion 模型生成的结果转换为您所选择的特定风格。需要注意的是,一些 Checkpoint 文件可能需要与特定的低码率编码器(如 Lora)配合使用,以获得更好的效果。

在下载 Checkpoint 文件时,您可以查看相应的模型简介,通常作者会提供相应的文件和说明事项,以帮助您更好地使用和理解该文件。

总之,Checkpoint 文件是 Stable Diffusion 模型训练过程中定期保存的状态快照,使用者可以将其理解为一种风格滤镜,用于将模型输出结果转换为特定的风格。在使用 Checkpoint 文件时,需要注意文件的匹配和相应的使用说明

03、embedding

如果你有做过 UI 的经验,那么你应该知道组件的概念。在 Stable Diffusion 中,embedding 技术就可以被理解为一种组件,它可以将输入数据转换成向量表示,方便模型进行处理和生成。

举个例子,如果我们想要生成一个开心的皮卡丘,通常需要输入很多描述词,如黄毛、老鼠、长耳朵、腮红等等。但是,如果引入皮卡丘的 embedding,我们只需要输入两个词:皮卡丘和开心。皮卡丘的 embedding 打包了所有皮卡丘的特征描述,这样我们就不用每次输入很多单词来控制生成的画面了。

在日常使用中,embedding 技术通常用于控制人物的动作和特征,或者生成特定的画风。相比于其他模型(如 LORA),embedding 的大小只有几十 KB,而不是几百兆或几 GB,除了还原度对比 lora 差一些但在存储和使用上更加方便。

总之,embedding 技术将输入数据转换为向量表示,为模型的处理和生成提供了便利。通过使用 embedding,我们可以更加轻松地生成符合预期的样本,而不需要手动输入大量的描述词汇。

04、fine-tuning

fine-tuning是微调的意思,是用别人训练好的模型(即pre-trained model),加上我们自己的数据,来训练新的模型。fine tune相当于使用别人的模型的前几层,来提取浅层特征,然后在最后再落入我们自己的分类中。

一般来说我们自己需要做的方向,比如在一些特定的领域的识别分类中,我们很难拿到大量的数据。因为像在ImageNet上毕竟是一个千万级的图像数据库,通常我们可能只能拿到几千张或者几万张某一特定领域的图像,比如识别衣服啊、标志啊、生物种类等等。在这种情况下重新训练一个新的网络是比较复杂的,而且参数不好调整,数据量也不够,因此fine-tuning微调就是一个比较理想的选择。

05、Prompt

Prompt源自自然语言处理领域,直译“提示”,按字面理解,它能告诉、指导模型接下来你应当要做什么任务,是一个提示。或者换一种说法,就是它能够将下游任务改造成预训练模型期望的样子。

与此对应,我们将Prompt之前的Pre-train称作“第三范式”,它当时的原理是,将自己改造成下游任务期望的样子,“迁就”各种下游任务。

如果把范式们比作提供服务的乙方,那么“第三范式”Pre-train选择牺牲自己,按甲方要求勤勤恳恳改造自己,而到了“第四范式”Prompt,选择活出自己,改造甲方!

传统的 Model Tuning (模式调整)的范式:对于不同的任务,都需要将整个预训练语言模型进行精调,每个任务都有自己的一整套参数。

而Prompt Tuning(提示调整),对于不同的任务,每个任务都单独训练Prompt 参数,不训练预训练语言模型,这样子可以大大缩短训练时间,也极大地提升了模型的使用率。


希望这次分享的几个AI圈热词能让大家对AI圈正在聊什么有个简单的认识。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值