如果说2023年什么最火,AI是当仁不让的第一。和AI有关的一切:AI聊天、语音、绘画、视频…刷爆了所有我们能接触到的社交媒体和新闻渠道。
ChatGPT虽然很有武德,把其他热点也总结了出来,但还是悄咪咪地把人工智能放到了第一位。
但对非程序员群体来说,AI是有门槛的,至少现阶段是。即便不去使用,只是想和朋友同事聊聊这AI盛世,但好像只聊抖音上AI生成的小姐姐,也略显不上档次,格调不足。
那么如何在聊天中脱颖而出、引领话题,既能彰显学识渊博,又能点到即止,深藏功与名?很简单,学会这几个AI圈最火的单词,快速让你成为人群中最亮的那颗星。
01、LoRA
LoRA的全称是LoRA: Low-Rank Adaptation of Large Language Models。是一种轻量化的模型微调训练方法。
大语言模型一般拥有巨大参数量,如GPT-3有1750亿参数,如果这时需要让GPT学习某个特定领域的内容,就需要对大语言模型做微调,但如果直接对GPT-3做微调,因其巨大的参数量,每项微调都会产生巨大的成本和工作量。
LoRA的作用在此时显现,LoRA冻结了预训练模型的权重,并在每个 Transformer 块中注入可训练层,因为不需要大多数模型参与计算,所以大大降低了需要训练的参数量和对GPU硬件的要求。
简单来说,为了避免所有对大语言模型的训练都要调用所有参数,LoRA剥离出需要参与训练的部分,并只对这部分进行修改,大语言模型中的其他部分保持不动,从而降低了工程量和成本。
尽管 LoRA 最初是为大模型提出的,但该技术也可以应用于其他地方,比如近期大火的AI绘画中。
比如在Stable Diffusion中,LoRA使对Stable Diffusion微调工作变得简单且安全,并带来了这些好处:
-
更快的训练速度
-
计算要求较低。可以在具有 11 GB VRAM 的 2080 Ti 中创建一个全微调模型!
-
小了很多的训练模型。
结果是,现在任何人都可以到C站,即https://civitai.com/,下载一个LoRA模型,生成自己喜欢风格的小姐姐。
02、Checkpoint
对于模型作者而言,训练模型通常指生成 Checkpoint 文件。这些文件包含了模型参数和优化器状态等信息,是训练过程中定期保存的状态快照。
对于使用者而言,可以将 Checkpoint 文件理解为一种风格滤镜,例如油画、漫画、写实风等。通过选择对应的 Checkpoint 文件,您可以将 Stable Diffusion 模型生成的结果转换为您所选择的特定风格。需要注意的是,一些 Checkpoint 文件可能需要与特定的低码率编码器(如 Lora)配合使用,以获得更好的效果。
在下载 Checkpoint 文件时,您可以查看相应的模型简介,通常作者会提供相应的文件和说明事项,以帮助您更好地使用和理解该文件。
总之,Checkpoint 文件是 Stable Diffusion 模型训练过程中定期保存的状态快照,使用者可以将其理解为一种风格滤镜,用于将模型输出结果转换为特定的风格。在使用 Checkpoint 文件时,需要注意文件的匹配和相应的使用说明
03、embedding
如果你有做过 UI 的经验,那么你应该知道组件的概念。在 Stable Diffusion 中,embedding 技术就可以被理解为一种组件,它可以将输入数据转换成向量表示,方便模型进行处理和生成。
举个例子,如果我们想要生成一个开心的皮卡丘,通常需要输入很多描述词,如黄毛、老鼠、长耳朵、腮红等等。但是,如果引入皮卡丘的 embedding,我们只需要输入两个词:皮卡丘和开心。皮卡丘的 embedding 打包了所有皮卡丘的特征描述,这样我们就不用每次输入很多单词来控制生成的画面了。
在日常使用中,embedding 技术通常用于控制人物的动作和特征,或者生成特定的画风。相比于其他模型(如 LORA),embedding 的大小只有几十 KB,而不是几百兆或几 GB,除了还原度对比 lora 差一些但在存储和使用上更加方便。
总之,embedding 技术将输入数据转换为向量表示,为模型的处理和生成提供了便利。通过使用 embedding,我们可以更加轻松地生成符合预期的样本,而不需要手动输入大量的描述词汇。
04、fine-tuning
fine-tuning是微调的意思,是用别人训练好的模型(即pre-trained model),加上我们自己的数据,来训练新的模型。fine tune相当于使用别人的模型的前几层,来提取浅层特征,然后在最后再落入我们自己的分类中。
一般来说我们自己需要做的方向,比如在一些特定的领域的识别分类中,我们很难拿到大量的数据。因为像在ImageNet上毕竟是一个千万级的图像数据库,通常我们可能只能拿到几千张或者几万张某一特定领域的图像,比如识别衣服啊、标志啊、生物种类等等。在这种情况下重新训练一个新的网络是比较复杂的,而且参数不好调整,数据量也不够,因此fine-tuning微调就是一个比较理想的选择。
05、Prompt
Prompt源自自然语言处理领域,直译“提示”,按字面理解,它能告诉、指导模型接下来你应当要做什么任务,是一个提示。或者换一种说法,就是它能够将下游任务改造成预训练模型期望的样子。
与此对应,我们将Prompt之前的Pre-train称作“第三范式”,它当时的原理是,将自己改造成下游任务期望的样子,“迁就”各种下游任务。
如果把范式们比作提供服务的乙方,那么“第三范式”Pre-train选择牺牲自己,按甲方要求勤勤恳恳改造自己,而到了“第四范式”Prompt,选择活出自己,改造甲方!
传统的 Model Tuning (模式调整)的范式:对于不同的任务,都需要将整个预训练语言模型进行精调,每个任务都有自己的一整套参数。
而Prompt Tuning(提示调整),对于不同的任务,每个任务都单独训练Prompt 参数,不训练预训练语言模型,这样子可以大大缩短训练时间,也极大地提升了模型的使用率。
希望这次分享的几个AI圈热词能让大家对AI圈正在聊什么有个简单的认识。