1 数据挖掘:数据挖掘又称知识发现。
过程:数据清理,数据集成,数据选择,数据变换,数据挖掘,模式评估,知识表达。
数据类型:数据库数据,数据仓库,事务数据,其他类型。
技术:统计学、机器学习、模式识别、数据库和数据仓库、信息检索、可视化、算法、高性能计算 和 许多应用领域的大量技术。
2 深度学习:是源于对人工神经网络的研究,模仿人脑机制处理数据,是多层结构的学习算法。表示为每个像素强度值的向量,或者更抽象地表示成一系列边、特定形状的区域等。
3 机器学习:近代兴起的多交叉领域学科,涉及概率论,统计学等多门学科,机器学习主要是设计一些机器可以使用的算法,对未知数据进行预测。
作用:提高机器的先进性,更好为人服务
4,统计学:通过搜索,整理,分析数据,推断所测对象的本质。
研究对象:大量现象的数量方面,包括数量特征和数量关系。
研究方法:大量观察法、实验设计法、统计分组法、综合指标法、统计模型法、统计推断法。
深度学习和机器学习:深度学习是实现机器学习的一种方式或一条路径。其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据。比如其按特定的物理距离连接;而深度学习使用独立的层、连接,还有数据传播方向。