Faster RCNN网络
介绍
看了B站up主(霹雳吧啦Wz)对于Faster RCNN的讲解视频做了笔记以及自身理解。Faster RCNN是在Fast RCNN基础上做了改进,由于Fast RCNN网络的候选区域和提取特征以及分类回归任务是分开的,所以Faster RCNN就想着,能不能把候选区域和这几个步骤联合在一个网络中,就实现端到端,不需要分步骤呢?下图就是Faster RCNN的步骤:
Faster RCNN算法的流程
1、来了一张图,直接将整张图输入到网络中得到特征图(Fast RCNN在这一步同时从原图上使用SS算法生成候选框)
2、得到特征图后,使用RPN结构生成候选框,将生成的候选框再投影到特征图上得到相应特征矩阵。
3、将每个特征矩阵通过ROI POOLING层缩放到7x7的特征图,再将特征图展平送到全连接层。
损失(深入理解后再补充。。。)
是由RPN Loss和Fast RCNN Loss联合起来的。所以说Faster RCNN就是Fast RCNN加上一个RPN网络。