Faster RCNN的简单理解

FasterRCNN在FastRCNN基础上进行改进,通过引入区域提议网络(RPN)实现端到端训练。网络首先对整张图进行处理得到特征图,然后RPN生成候选框,经过ROIPOOLING层处理后送入全连接层。损失函数由RPNLoss和FastRCNNLoss组成,优化目标检测的效率和精度。
摘要由CSDN通过智能技术生成

Faster RCNN网络

介绍

看了B站up主(霹雳吧啦Wz)对于Faster RCNN的讲解视频做了笔记以及自身理解。Faster RCNN是在Fast RCNN基础上做了改进,由于Fast RCNN网络的候选区域和提取特征以及分类回归任务是分开的,所以Faster RCNN就想着,能不能把候选区域和这几个步骤联合在一个网络中,就实现端到端,不需要分步骤呢?下图就是Faster RCNN的步骤:
在这里插入图片描述

Faster RCNN算法的流程

1、来了一张图,直接将整张图输入到网络中得到特征图(Fast RCNN在这一步同时从原图上使用SS算法生成候选框)
2、得到特征图后,使用RPN结构生成候选框,将生成的候选框再投影到特征图上得到相应特征矩阵。
3、将每个特征矩阵通过ROI POOLING层缩放到7x7的特征图,再将特征图展平送到全连接层。

损失(深入理解后再补充。。。)

是由RPN Loss和Fast RCNN Loss联合起来的。所以说Faster RCNN就是Fast RCNN加上一个RPN网络。

RCNN、FAST RCNN、FASTER RCNN框架对比

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值