如何将AI、大数据等技术与专业服务结合,构建从数据收集、治理、分析、建模到商业应用的全价值链解决方案,又如何来做好智能决策?
北拓资本「数字科技百日谈」,邀请数说故事创始人&CEO徐亚波博士,一起探讨这个话题。
Q1 回望数说故事这七年,大致可以分为哪些阶段,这些阶段当中是怎么走过来的?
01 徐亚波博士:
创业的第一个阶段,也就是公司成立的前两年,第一,对我来说从技术上叫工程化,从商业上叫方向的抉择。 从学术上可能算法上比较领先,但是把算法工程化还是需要很多时间的。我们用这两年时间完成了工程化加方向选择。数据是人类的一个生产要素,或者说它是一个更底层的要素,好的算法没有数据的“喂养”也无法成为好的算法。所以我们从基础设施角度来说,预先做了Data这件事情。
第二,商业场景的选择。我记得前两年我们也是服务各种各样的客户,我们在两个方向之间做了一个选择。一个方向是DMP,可以理解为把数据汇总到一起,然后在上面推动营销的投放。还有一个是依托数据做分析类的场景,我们称之为商业分析场景。
2016-2018年对我们来说叫标杆项目阶段和产品化阶段,以及行业和应用场景阶段,这个阶段又奠定了我们公司另外一个核心。当时很多行业都要用到数据和场景,我们选谁和不选谁?我们后来先选择了消费品这个大赛道切入。因为我们认为消费品几乎是一个永恒的行业,老百姓始终要吃穿住行。
二是我们优先选择了大客户,因为从中国的大企业中吸收经验更有利于我们当时的快速积累。又因我们做的是数据,数据这个东西本质上它还是一个“奢侈品”,只有这个公司有一定的体量,有大量的数据才能用数据治理好它,或者是产生更客观的效益。所以无论是客户需求还是付费能力上,在2016-2018年,基本上确定了我们早期的KA模式。
除了服务客户以外,回归本质我们是一家技术和产品型的公司,所以2016-2018年始终在解决产品和项目之间的关系问题,最后找到一个解决方案,本质上只能通过我们的PaaS平台来解决,就是你要把交付能力、基础设施做好,然后在上面可以应付多场景或者是灵活多边的交付。所以我们又是在业内比较早的意识到PaaS平台是SaaS公司的选择模式之一的公司。再加上我们的技术基因很强,所以我们从2016-2018年完成了各种标杆客户加一定的产品化,就开始进入到第三个阶段,也就是开始做基础设施。
从2018-2021年,这是我们的第三个阶段,PaaS平台做出来了。从此之后,我们做产品就开始不仅做单一应用场景,开始做多元应用场景。因为我们有能力做多元应用场景了,更进一步反向促成了我们数据的多元化,那个时候我们从线上数据开始走到了线下数据。到了2021年,从气质上在国内没有那么完全对标的公司。
数说故事是一家什么样的公司呢?是一家把数据从收集或者是合作,然后到处理、建模、可视化、构建应用、交付客户,整个产业链是非常完整的。
四是阶段,是做成一个平台模式,一端不停增加数据源,一端不停增加应用。客户因为你的应用越来越多,黏性越来越强,客单价越来越高,然后也能帮助他完成一体化的连续的解决方案能力。所以我们从2021年开始,进入了一个新的平台阶段,我们称之为“飞轮模式”。
大概是分为这四个阶段:一是方向选择和工程化;二是标杆加产品化;三是基础设施,是PaaS平台加丰富的场景;四是平台加生态阶段。
Q2 从甲方的视角或者是乙方的视角分别讲一下对数字化的理解?
02 徐亚波博士:
我非常愿意谈和客户有关的事,这也是我主要的关注点。我自己有一个很大的看法,整个中国社会在过去这些年里,在软件产业或者SaaS产业发展并没有那么健康,那从甲方、乙方视角究竟他们需要什么,为什么没有被满足?
从甲方视角来看,从早期来说他是希望做数字化,解决方案或者是RFP这些东西。一提可能我做数字化三年需要5000万,一年投一千多万,传统上是这种大项目模式,甲方在做这件事情的时候决策是很艰难的,而且选错一个供应商的代价是很大的。从甲方角度来说,他很希望把数字化这件事给分成一个个小阶段,一个个小场景,最好花一分钱就可以见效一块的,这是所有甲方老板给我们提的诉求。
从乙方来看,就会把他的大生意分成一个个小生意,那么这些小生意是不是都是自己的?作为一个公司拿到一个小生意之后,能不能做到足够规模化,在单个小生意上能不能赚到钱,这就会形成很大的问题。
这就是中国过去那么多年来,很多SaaS公司刚开始拿到了很多钱之后做的事情,也就是说他不想做老模式,他想做产品化,做产品化他就希望卖更多客户去完成他的积累,或者完成赚钱。但是当他卖更多客户就会陷入到一个误区,就是我只能卖SMB,或者说更多的客户覆盖,大客户头部就是那么多。
其实我觉得甲方和乙方之前是有一个错配的,这是我看到在中国这个行业里最大的一个差异点。其实我的思考很简单,你做生意就是要共赢思维。我总结一句话,要用甲方的逻辑去思考需求,要用乙方的思维模式提供产品和服务。
当然这个中间要把投资人的因素尽量的抛开,什么逻辑呢?你永远是特别细心的去研究在甲方的需求怎么能拆成100个场景,我自己的研究,弄清楚每一个场景怎么去解决,这是从甲方的思路入手的。
从乙方的角度,规模化是分为两种的,一种是纵向的重用,一种是横向的重用。在中国,横向的重用由于整个企业这一块的基础没有那么好,其实他可选的赛道是很少的,或者说只有少数的SaaS公司可以非常幸运的找到一个赛道,他在横向扩张非常有效。但是如果你纵向扩展的时候,其实你的优势是很明显的。第一个是你的客户质量很好,你只要选少数的或者是相对少的客户。第二个是销售成本很低,你的LTV/CAC肯定是很高的,它唯一挑战的是什么?唯一挑战的是这家公司的纵向复用度是多高,这是很本质的东西。
所谓的纵向复用度是你到底用同一个技术能不能做出多个场景来,同一份数据能不能做出多个场景来,你在平台算法这一层能不能复用,其实这就是我刚刚讲的PaaS的思维。
接下来我来讲讲数说故事是怎么来完成这个东西的?举例来说,我们还是从原点思考的,比如说我去看任何一家消费品企业什么对它最重要?我认为最重要的事情是要拥有一个好产品,好的产品是后续营销和渠道铺设的垫脚石,当时我们就瞄上了产品创新这个场景,但是在企业内,产品创新场景是非常复杂的。
在战略阶段,他可能决定要不要进入这个赛道,这个时候他会对赛道进行研究。他可能再会到具体赛道里面研究竞品,研究完竞品之后,会到具体赛道里选择要用什么颜色、什么原料、什么包装、什么创新之类的。类似的可拆解为三四个场景APP。这时决策因素就缩小了,我们就会一直往下延伸,其实我们现在已经做到了工业创新环节,也就是说他最后要买原料,我们就把全国的可行的供应商给选出来。这个过程越来越像产业互联网了。其实你只要沿着客户需求不断深挖,在纵向上你会越做越深,纵向上越做越深,同一个纵向里面的很多数据源、技术这些东西都是同一个逻辑。
举一个例子,当我们进入线下的时候,我们还服务了大量的门店客户,因为我们有很多线下数据。当我们进入这个行业的时候,我们看到一批做选址的公司,就是大概卖几千块钱一个月,一两万一年这种类型的,这就是我说的横向战略,就是通过覆盖更多来盈利。
但是我们的逻辑不是这样的,我们的逻辑是说,我们把选址往上去看,他其实是一个开店需求,开店的需求是扩张的需求。也就是说老板要回答的第一个问题是,明年的战略我到底要做多大扩张,到底增量是50%还是100%,应该在哪些城市。这个时候他就会从战略层面先用数据,然后再到逐步的选址,然后再到门店运营,到门店运营就会有选址和促销,它又被分成很多小的场景,我一步一步解决他的需求。
在做生意或者是从甲方、乙方这些数字化的视角来看,数说故事致力于提供轻量级、连续性的解决方案他的形态就是APP的“集合店”。我们可以让老板不用一下子花那么多钱,然后一步一步,一个一个的解决他各个场景遇到的问题。
Q3 现在最主要的是哪些类别的数据?未来想进一步扩充的有哪些数据类型?
03 徐亚波博士:
其实全网络数据这个概念并不精确,未来我们会叫OpenData,对我们来说,为什么不叫全网数据?因为有一些数据不是在网上的,它有可能是在线下的,但是是相对公开的。所以我们自己对数据的布局是这样的,我们最早前面的两三年,我们专注于线上数据,包括社交媒体的数据、电商数据、新闻、垂直网站数据。我们在前两年,三四年基本上把这个数据积累完成了,形成了一整套的数据合作和采集的逻辑。
第二,我们很快看到线下,因为你只做线上生意是不够的,因为中国还有70%-80%的数据在线下,这个时候线下数据系统化的收集、合作对你来说就比较重要,所以我们和各种各样的合作伙伴开始系统化研究线下数据,包括人、货、场的数据,如何把这些数据综合到一个体系当中,形成一套数据标准,这个是线下数据。
最近一两年,我们开始把目光放到海外,也就是说线上、线下我们都已经有布局了,再接下来海外数据就比较重要,因为帮助中国品牌出海也是我们非常重要的使命之一,所以最近一两年我们开始重视积累海外数据,包括TikTok、Lazada,包括电商的数据和独立站的数据,这些数据都是我们比较系统化的积累的,现在已经初具雏形了。
还有线上线下都是比较偏营销类的数据,或者说跟营销是更相关的,我们正在进一步做产业的数据,比如说在一个产业链,他的上下游是什么关系,就是B2B的数据,这也是我们新的大方向。
线上、线下、国内、海外,从营销类到更深的产业类数据,这是我们非常大的一个布局。
本文作者:数说故事