1.CodeShell简介
CodeShell是北京大学知识计算实验室联合四川天府银行AI团队研发的多语言代码大模型基座。它拥有70亿参数,经过对五千亿Tokens的训练,并具有8192的上下文窗口长度。CodeShell在权威的代码评估Benchmark(HumanEval与MBPP)上取得了同等规模最好的性能。这个项目为多语言代码处理和理解提供了有力的工具
-
能力点
-
强大的性能:CodelShell在HumanEval和MBPP上达到了7B代码基座大模型的最优性能
-
完整的体系:除了代码大模型,同时开源IDE(VS Code与JetBrains)插件,形成开源的全栈技术体系
-
轻量化部署:支持本地C++部署,提供轻量快速的本地化软件开发助手解决方案
-
全面的评测:提供支持完整项目上下文、覆盖代码生成、代码缺陷检测与修复、测试用例生成等常见软件开发活动的多任务评测体系(即将开源)
-
高效的训练:基于高效的数据治理体系,CodeShell在完全冷启动情况下,只训练了五千亿Token即获得了优异的性能
-
-
开源模型
- CodeShell Base:CodelShell底座模型,具有强大的代码基础能力。
- CodeShell Chat:CodelShell对话模型,在代码问答、代码补全等下游任务重性能优异。
- CodeShell Chat 4bit:CodelShell对话模型4bit量化版本,在保证模型性能的前提下内存消耗更小,速度更快。
- CodeShell CPP:CodelShell对话模型CPP版本,支持开发者在没有GPU的个人电脑中使用。注意,CPP版本同样支持量化操作,用户可以在最小内存为8G的个人电脑中运行CodeShell。
2.效果评估
我们选取了目前最流行的两个代码评测数据集(HumanEval与MBPP)对模型进行评估,与目前最先进的两个7b代码大模型CodeLllama与Starcoder相比,Codeshell 取得了最优的成绩。具体评测结果如下。
任务 | CodeShell-7b | CodeLlama-7b | Starcoder-7b |
---|---|---|---|
humaneval | 34.32 | 29.44 | 27.80 |
mbpp | 38.65 | 37.60 | 34.16 |
multiple-js | 33.17 | 31.30 | 27.02 |
multiple-java | 30.43 | 29.24 | 24.30 |
multiple-cpp | 28.21 | 27.33 | 23.04 |
multiple-swift | 24.30 | 25.32 | 15.70 |
multiple-php | 30.87 | 25.96 | 22.11 |
multiple-d | 8.85 | 11.60 | 8.08 |
multiple-jl | 22.08 | 25.28 | 22.96 |
multiple-lua | 22.39 | 30.50 | 22.92 |
multiple-r | 20.52 | 18.57 | 14.29 |
multiple-rkt | 17.20 | 12.55 | 10.43 |
multiple-rs | 24.55 | 25.90 | 22.82 |
3.快速开始
3.1环境依赖
- python 3.8 and above
- pytorch 2.0 and above are recommended
- transformers 4.32 and above
- CUDA 11.8 and above are recommended (this is for GPU users, flash-attention users, etc.)
CodeShell系列模型已经上传至 Hugging Face,开发者可以通过Transformers快速调用CodeShell和CodeShell-Chat。
在开始之前,请确保已经正确设置了环境,并安装了必要的代码包,以及满足上一小节的环境要求。你可以通过下列代码快速安装相关依赖。
pip install -r requirements.txt
接下来你可以通过Transformers使用CodeShell。
3.2 Code Generation
开发者可以使用CodeShell快速生成代码,加速开发效率。
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = 'cuda' if torch.cuda.is_available() else 'cpu'
tokenizer = AutoTokenizer.from_pretrained("WisdomShell/CodeShell-7B")
model = AutoModelForCausalLM.from_pretrained("WisdomShell/CodeShell-7B", trust_remote_code=True, torch_dtype=torch.bfloat16).to(device)
inputs = tokenizer('def merge_sort():', return_tensors='pt').to(device)
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0]))
- Fill in the Moddle
CodeShell 支持Fill-in-the-Middle模式,从而更好的支持软件开发过程。
input_text = "<fim_prefix>def print_hello_world():\n <fim_suffix>\n print('Hello world!')<fim_middle>"
inputs = tokenizer(input_text, return_tensors='pt').to(device)
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0]))
- 代码问答
CodeShell同时开源了代码助手模型CodeShell-7B-Chat,开发者可以通过下列代码与模型进行交互。
model = AutoModelForCausalLM.from_pretrained('WisdomShell/CodeShell-7B-Chat', trust_remote_code=True, torch_dtype=torch.bfloat16).to(device)
tokenizer = AutoTokenizer.from_pretrained('WisdomShell/CodeShell-7B-Chat')
history = []
query = '你是谁?'
response = model.chat(query, history, tokenizer)
print(response)
history.append((query, response))
query = '用Python写一个HTTP server'
response = model.chat(query, history, tokenizer)
print(response)
history.append((query, response))
开发者也可以通过VS Code与JetBrains插件与CodeShell-7B-Chat交互,详情请参VSCode插件仓库与IntelliJ插件仓库。
- Model Quantization
CodeShell 支持4 bit/8 bit量化,4 bit量化后,占用显存大小约6G,用户可以在显存较小的GPU上使用CodeShell。
model = AutoModelForCausalLM.from_pretrained('WisdomShell/CodeShell-7B-Chat-int4', trust_remote_code=True).to(device)
tokenizer = AutoTokenizer.from_pretrained('WisdomShell/CodeShell-7B-Chat-int4')
- CodeShell in c/c++
由于大部分个人电脑没有GPU,CodeShell提供了C/C++版本的推理支持,开发者可以根据本地环境进行编译与使用,详见CodeShell C/C++本地化版。
3.3 Demo
我们提供了Web-UI、命令行、API、IDE四种形式的Demo。
3.3.1 Web UI
开发者通过下列命令启动Web服务,服务启动后,可以通过https://127.0.0.1:8000
进行访问。
python demos/web_demo.py
3.3.2 CLI Demo
我们也提供了命令行交互的Demo版本,开发者可以通过下列命令运行。
python demos/cli_demo.py
3.3.3 API
CodeShell也提供了基于OpenAI API的部署方法。
python demos/openai_api.py
启动后即可通过HTTP请求与CodeShell交互。
curl http://127.0.0.1:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "CodeShell-7B-Chat",
"messages": [
{
"role": "user",
"content": "你好"
}
]
}'
3.3.4 IDE
CodeShell最后提供了线上IDE,开发者可以通过IDE进行代码补全、代码问答等操作。同时,IDE插件也同时发布,开发者可以自行在本地进行安装使用。插件相关问题欢迎在VSCode插件仓库与IntelliJ插件仓库中讨论。
4.模型详情
Code Shell使用GPT-2作为基础架构,采用Grouped-Query Attention、RoPE相对位置编码等技术。
4.1 Hyper-parameter
Hyper-parameter | Value |
---|---|
n_layer | 42 |
n_embd | 4096 |
n_inner | 16384 |
n_head | 32 |
num_query_groups | 8 |
seq-length | 8192 |
vocab_size | 70144 |
4.2 数据集
CodeShell基于自己爬取的Github数据、Big Code开源的Stack和StarCoder数据集、以及少量高质量的中英文数据进行训练。在原始数据集的基础上,CodeShell采用基于Minihash对数据去重,基于KenLM以及高质量数据筛选模型对数据进行了过滤与筛选,最终得到高质量的预训练数据集。
4.3 Tokenizer
CodeShell基于Starcoder词表进行了优化,去除了使用频率较低的词语,并添加了部分中文词表,显著提升了中文的压缩率,为Chat版本的训练提供了基础。
Tokenizer | Size | Chinese | English | Code | Total |
---|---|---|---|---|---|
Starcoder | 49152 | 1.22 | 3.47 | 3.30 | 2.66 |
CodeShell | 70020 | 1.50 | 3.47 | 3.30 | 2.95 |
参考链接:
* Hugging Face模型链接:[https://huggingface.co/WisdomShell/CodeShell-7B/tree/main](https://huggingface.co/WisdomShell/CodeShell-7B/tree/main)
* [codeshell](https://github.com/WisdomShell/codeshell)
* https://se.pku.edu.cn/kcl/
最后
感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。
因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
五、面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】