【AI大模型】从RAG到记忆——大模型的非参数化持续学习,收藏这一篇就够了!!

前言

今天我们将探讨一篇RAG的论文,主题是大模型的非参数化持续学习框架——HippoRAG 2。该研究针对大模型在吸收新知识和避免灾难性遗忘方面的挑战,提出了一种新的方法,模拟人类长期记忆的动态性和关联性。HippoRAG 2在事实记忆、语义理解和关联记忆任务上的表现好于标准检索增强生成(RAG)方法,为大模型的持续学习提供了新的可能性。

1. 基本信息

  • 论文标题《从RAG到记忆:大模型的非参数化持续学习》(From RAG to Memory: Non-Parametric Continual Learning for Large Language Models)

  • 作者包括Bernal Jiménez Gutiérrez、Yiheng Shu、Weijian Qi、Sizhe Zhou和Yu Su,分别来自俄亥俄州立大学(The Ohio State University)和伊利诺伊大学厄巴纳-香槟分校(University of Illinois Urbana-Champaign)。

  • GitHub地址为https://github.com/OSU-NLP-Group/HippoRAG

2. 研究背景

近年来,大模型在自然语言处理领域取得了显著进展,涵盖从对话生成到复杂推理的多种任务。但在持续学习方面,大模型仍面临较大挑战。

其他持续学习方法通常分为三类:持续微调、模型编辑和RAG。

  • 持续微调(Continual fine-tuning)涉及定期用新数据对大型语言模型进行训练。可以通过像持续预训练、指令微调和对齐微调等方法实现。虽然整合了新的语言模式和推理技能,但持续微调受到灾难性遗忘的影响,即随着新数据的引入而丢失先前学到的知识。此外,其计算费用使得频繁更新对现实世界的应用来说也不具备可操作性。

  • 模型编辑技术(Model editing)提供了一个更轻量级的替代方案,通过直接修改模型中的特定参数来更新其知识。然而,这些更新高度局部化,对与更新相关联的信息影响很小。

  • 检索增强生成(Retrieval-Augmented Generation)作为连续学习的一个可扩展且实用的替代方案。与其修改大型语言模型(LLM)本身,不如在推理时检索相关的外部信息,允许实时适应新知识

总的来说,传统方法如持续微调和模型编辑试图通过更新参数来融入新知识,但往往因灾难性遗忘和高计算成本而受限。例如,实验表明,持续微调可能导致模型遗忘早期训练数据中的知识,而模型编辑的更新效果通常局限于局部,难以全面关联相关信息。检索增强生成(RAG)因其非参数化特性成为解决这一问题的热门方案,通过在推理时检索外部信息,避免直接修改模型参数。但标准RAG依赖向量检索,难以捕捉人类长期记忆中的语义理解和关联性,特别是在处理多跳推理或长篇语篇时表现不足。

针对这些局限性,近年来的研究提出了多种结构增强的RAG方法。例如,RAPTOR通过生成摘要整合信息,GraphRAG则利用知识图谱(KG)增强检索过程。尽管这些方法在语义理解或关联性任务上有所改进,但实验表明,它们在基本事实记忆任务上的性能下降,未能实现全面的记忆能力。HippoRAG 2的研究动机源于此,旨在设计一种框架,既能保持事实记忆的准确性,又能提升语义理解和关联记忆的深度,从而更接近人类长期记忆的动态特性

GraphRAG是一种利用知识图谱增强检索增强生成(RAG)的方法,旨在通过结构化数据提升大模型的全局理解和推理能力。该方法通过大模型从源文档中提取实体、关系和声明,构建一个实体知识图谱。这种图结构不仅捕捉了实体间的直接关系,还通过社区检测技术识别出实体群组,生成社区摘要以提供高层次的语义信息。在检索阶段,GraphRAG利用图的结构信息进行上下文感知的检索,能够处理需要跨整个数据集进行信息汇总的复杂查询。相较于传统的RAG方法,GraphRAG在处理全局性问题时表现出色,能够生成更连贯和全面的回答,特别适用于需要深入语义理解的场景。

LightRAG是一种将图结构融入文本索引和检索过程的RAG系统,旨在提升大模型在处理复杂查询时的效率和准确性。该方法采用双层检索框架,结合低级和高级知识发现,增强了信息检索的全面性。通过将图结构与向量表示相结合,LightRAG能够高效检索相关实体及其关系,显著提高响应速度,同时保持上下文的相关性。此外,LightRAG引入了增量更新算法,确保系统能够及时整合新数据,适应快速变化的数据环境。实验表明,LightRAG在多个领域的数据集上超越了传统RAG和GraphRAG,尤其在处理大规模语料库和复杂查询时表现出色,提供了更准确和多样化的回答。

3. 方法(重点内容)

HippoRAG 2的提出源于标准RAG和现有改进方法在模拟人类记忆方面的不足。标准RAG依赖向量检索,虽然简单高效,但无法处理复杂的上下文关联;而结构增强方法虽有所进步,但牺牲了事实记忆的性能。基于此,HippoRAG 2在前作HippoRAG的基础上,结合个性化PageRank(PPR)算法、深入的段落集成和有效的在线大模型使用,构建了一个更强大的非参数化持续学习框架。这一框架通过离线索引和在线检索两个阶段实现,其设计灵感来源于人类大脑的神经机制。

离线索引

在离线索引阶段,HippoRAG 2首先利用大模型从每个段落中提取开放三元组(如(subject, relation, object)),并将其整合到一个无模式的开放KG中。KG包含两类节点:

  • 短语节点(phrase nodes),代表概念;

  • 段落节点(passage nodes),保留上下文信息。

此外,通过编码器检测短语间的同义关系并添加同义边(synonym edges),实现跨段落的信息互联。段落节点通过"contains"边与从中提取的短语节点相连。这种设计借鉴了大脑的密集与稀疏编码理论,其中短语节点类似稀疏编码,提供简洁的概念表示,而段落节点类似密集编码,保留丰富的上下文细节。最终,KG整合了概念的原子性和上下文的全面性,为后续检索奠定了基础。

在线检索

在线检索是HippoRAG 2的核心,分为以下步骤:

  1. 通过"Query to Triple"过程,编码器将查询与KG中的三元组匹配,识别潜在种子节点。与HippoRAG依赖NER(命名实体识别)不同,HippoRAG 2直接匹配整个查询,捕获更丰富的上下文。

  2. 通过"Recognition Memory"机制,大模型过滤检索到的三元组,仅保留与查询高度相关的部分,模拟人类记忆中的识别过程,减少噪声干扰。

  3. 利用个性化PageRank(PPR)算法在KG上进行上下文感知检索。PPR通过随机游走计算节点的重要性,公式如下:

    其中,是节点的PageRank分数,是阻尼因子(通常设为0.5),是连接到的节点集合,是的出度。PPR通过种子节点的个性化初始化,发现多跳关联的段落。

  4. 根据PageRank分数对段落排序,选出得分最高的段落用于下游任务。

与现有方法的对比

与标准RAG相比,HippoRAG 2通过KG和PPR实现了关联性推理,而非仅依赖向量相似性。与GraphRAG等方法不同,其KG直接辅助检索而非扩展语料库,避免了生成噪声的干扰。相较于HippoRAG,HippoRAG 2通过段落节点的整合和识别记忆机制,显著提升了上下文感知能力

4. 实验与发现

HippoRAG 2的实验在多个基准数据集上进行,包括:

  • 简单QA任务:NaturalQuestions、PopQA;

  • 多跳QA任务:MuSiQue、2Wiki、HotpotQA、LV-Eval;

  • 语篇理解任务:NarrativeQA。

这些数据集覆盖事实记忆、语义理解和关联记忆三个维度,样本数量从124到1000不等,语料库段落数在4111到22849之间(详见论文Table 1)。评估指标包括检索任务的Recall@5和QA任务的F1分数,实验使用Llama-3.3-70B-Instruct作为提取和过滤模型,NV-Embed-v2作为检索器,确保结果的可重复性。

实验表明,HippoRAG 2在所有基准上均好于基线方法。以下是部分关键数据(论文Table 2和Table 3):

  • 在简单QA任务中,HippoRAG 2在NaturalQuestions上的F1分数为63.3,PopQA为56.2,略高于NV-Embed-v2的61.9和55.7;

  • 在多跳QA任务中,其在MuSiQue上的Recall@5为74.7(比NV-Embed-v2高5.0%),2Wiki为90.4(高13.9%),HotpotQA为96.3;

  • 在语篇理解任务NarrativeQA上,F1分数达25.9,表现最好。

这些数据表明,HippoRAG 2在保持事实记忆能力的同时,显著提升了关联性和语义理解能力。

进一步分析显示,HippoRAG 2的优越性具有统计显著性。例如,在减少知识泄漏的挑战性数据集LV-Eval上,其F1分数为12.9,远高于NV-Embed-v2的7.8,凸显了其在复杂场景中的鲁棒性。对比HippoRAG,其改进版本在多跳任务上的提升尤为明显,验证了方法设计的有效性。

5. 结论与展望

HippoRAG 2通过整合个性化PageRank算法、段落节点和识别记忆机制,成功构建了一个接近人类长期记忆的RAG框架。其核心贡献在于实现了事实、语义和关联记忆的全面提升,为大模型的非参数化持续学习提供了新范式。实验表明,该框架在多种任务中表现出色,尤其在多跳推理和语篇理解方面具有显著优势

HippoRAG 2的研究方向值得进一步探索。例如,将episodic memory融入框架,可能实现对话中的动态记忆能力,推动大模型在长时交互中的应用。此外,结合领域自适应技术,HippoRAG 2有望在特定场景(如法律、医疗)中展现更大潜力,为AI的实用化迈出重要一步。

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值