数据分析常用代码

#Pandas:用于数据处理和分析的强大库。

import pandas as pd

# 读取数据
data = pd.read_csv("data.csv")

# 查看数据概览
print(data.head())

# 数据统计
print(data.describe())

# 数据筛选
filtered_data = data[data["column_name"] > 10]

# 数据排序
sorted_data = data.sort_values(by="column_name")

# 数据聚合
aggregated_data = data.groupby("column_name").mean()

# 数据可视化
data.plot(x="column_1", y="column_2", kind="scatter")

#NumPy:用于科学计算的基础库,提供了高性能的数组操作功能。

import numpy as np

# 创建数组
arr = np.array([1, 2, 3, 4, 5])

# 数组运算
result = arr + 2

# 数组统计
mean = np.mean(arr)
std = np.std(arr)

# 数组操作
reshaped_arr = arr.reshape((2, 3))
sorted_arr = np.sort(arr)

#Matplotlib:用于绘制数据可视化图表的库。

import matplotlib.pyplot as plt

# 绘制折线图
plt.plot(x, y)
plt.xlabel("X轴")
plt.ylabel("Y轴")
plt.title("折线图")
plt.show()

# 绘制柱状图
plt.bar(x, y)
plt.xlabel("X轴")
plt.ylabel("Y轴")
plt.title("柱状图")
plt.show()

# 绘制散点图
plt.scatter(x, y)
plt.xlabel("X轴")
plt.ylabel("Y轴")
plt.title("散点图")
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值