#Pandas:用于数据处理和分析的强大库。
import pandas as pd
# 读取数据
data = pd.read_csv("data.csv")
# 查看数据概览
print(data.head())
# 数据统计
print(data.describe())
# 数据筛选
filtered_data = data[data["column_name"] > 10]
# 数据排序
sorted_data = data.sort_values(by="column_name")
# 数据聚合
aggregated_data = data.groupby("column_name").mean()
# 数据可视化
data.plot(x="column_1", y="column_2", kind="scatter")
#NumPy:用于科学计算的基础库,提供了高性能的数组操作功能。
import numpy as np
# 创建数组
arr = np.array([1, 2, 3, 4, 5])
# 数组运算
result = arr + 2
# 数组统计
mean = np.mean(arr)
std = np.std(arr)
# 数组操作
reshaped_arr = arr.reshape((2, 3))
sorted_arr = np.sort(arr)
#Matplotlib:用于绘制数据可视化图表的库。
import matplotlib.pyplot as plt
# 绘制折线图
plt.plot(x, y)
plt.xlabel("X轴")
plt.ylabel("Y轴")
plt.title("折线图")
plt.show()
# 绘制柱状图
plt.bar(x, y)
plt.xlabel("X轴")
plt.ylabel("Y轴")
plt.title("柱状图")
plt.show()
# 绘制散点图
plt.scatter(x, y)
plt.xlabel("X轴")
plt.ylabel("Y轴")
plt.title("散点图")
plt.show()
数据分析常用代码
最新推荐文章于 2023-12-31 05:39:34 发布