动作识别
focus_clam
这个作者很懒,什么都没留下…
展开
-
动作识别-Regularization on Spatio-Temporally Smoothed Feature for Action Recognition-CVPR2020
Abstract3D 卷积核,由于参数量多,容易overfitting;提出了一种正则化方法;the key idea of RMS is to randomly vary the magnitude of low-frequency components of the feature to regularize the model.Introduction解决overfitting问题有Perturbation base regularization methods on the input sp.原创 2020-07-30 15:33:08 · 493 阅读 · 0 评论 -
Action Recognition-Temporal Attentive Alignment for Large-Scale Video Domain Adaptation——ICCV2019
Abstractimage-based domain adaptation, domain shift in videos,Two large-scale DA datasets (UCF-HMDB_full, Kinetics-Gameplay)Introductionvideos can suffer from domain discrepancy along both the spatial and temporal directions.Claim的两个点:Conclusionth.原创 2020-07-17 17:55:19 · 5248 阅读 · 0 评论 -
Action Recognition——Deep Domain Adaptation in Action Space——BMVC2018
AbstractThe problem of Domain Shift in action videos.Introduction实际应用例子surveillance cameras are everywhere, be it city streets, market place, buildings or airports. A massive amount of video data that needs to be processed for autonomous understanding .原创 2020-07-17 17:52:58 · 244 阅读 · 0 评论 -
动作识别——Multi-Model Domain Adaptation for Fine-Grained Action Recognition——CVPR2020 oral
AbstractFine-grained action recognition datasets exhibit environmental bias, where multiple video sequences are captured from a limited number of environments. Multi-modal nature of video(视频的多模态性),提出的方法一个是multi-modal self-supervision,还有一个是adversarial tra.原创 2020-07-06 22:11:53 · 1537 阅读 · 0 评论 -
动作识别——action recognition新手入门
定义行为识别似乎是图像分类任务到多个帧的扩展,然后聚合来自每帧的预测背景传统方法,视频输入=》特征提取=》特征融合=》特征分类=》分类结果深度学习方法,单流法,双流法,基于骨架特征提取,ROI提取表示传统方法DT(Dense Trajectories)算法,是利用光流场来获得视频序列中的轨迹,在沿着轨迹提取轨迹形状特征HOF,HOG,MHB特征,然后利用BoF(Bag of Features)方法对特征进行编码,最后基于编码结果训练SVM分类器。iDT算法,基于DT算法进行了以下几点的改进:原创 2020-07-06 19:57:36 · 1949 阅读 · 0 评论