网络学习:简单路由

要使得192.168.1的网络与192.168.2的网络互通,需要在路由器上做配置:

在192.168.1的路由器上配置:

L3>en           //进入特权模式
L3#conf t       //进入配置
L3(config)#interface gigabitEthernet 0/0            //选择接口(端口)
L3(config-if)#ip address 192.168.1.1 255.255.255.0  //添加IP地址
L3(config-if)#exit
L3(config)#interface gigabitEthernet 0/1
L3(config-if)#ip address 192.168.1.4 255.255.255.0
L3(config-if)#exit
L3(config)#ip route 192.168.2.0 255.255.255.0 192.168.3.5  //添加路由

在192.168.2的路由器上做相应的配置,那么两个网络就互通了。

关键点:
                            1、交换机属于2层(没有IP地址),即工作于数据链路层,它能识别 MAC 地址,并根据 MAC 地址转发链路层数据帧,具有自学机制来维护 IP 地址与 MAC 地址的映射。路由器属于3层(有IP地址),即位于网络层,它能识别 IP 地址并根据 IP 地址转发分组,维护着路由表,根据路由表选择最佳路线;
                            2、路由接口的IP设置(网关);
                           3、路由命令,将访问的地址配置给到对应的路由IP。(如同包裹投递,将投递到目的点包裹投放到相应的转接点,路由器内部能自动处理)

 

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值