概率论
文章平均质量分 87
DawnRanger
这个作者很懒,什么都没留下…
展开
-
随机变量及概率分布
本文主要包含四个部分的内容:一维随机变量及其概率分布、二维随机变量及其概率分布、条件分布、随机变量的相互独立性。1. 一维随机变量1.1 随机变量与分布函数- 分布函数: 设X是一个随机变量,记F(x)=P{X<x},x∈(−∞,+∞)F(x)=P\{X<x\},x \in (- \infty, + \infty)称F(x)F(x)为随机变量 XX 的分布函数。- 性质(充要条件):F(x)F原创 2016-10-24 17:25:36 · 6722 阅读 · 0 评论 -
条件概率与事件的相互独立性
1. 条件概率与乘法定理设 A,BA,B 为两个事件,而 P(B)≠0P(B) \neq 0,称 P(A|B)=P(AB)P(B) P(A|B)=\frac{P(AB)}{P(B)} 为在事件 B 发生的条件下事件 A 发生的条件概率。乘法定理: 若 P(B)>0P(B)>0,则 P(AB)=P(B)P(AB)P(AB)=P(B)P(AB)乘法定理可以推广到 n(n>2)n(n>2) 个事件原创 2016-10-24 17:18:08 · 11884 阅读 · 1 评论 -
大数定律与中心极限定理
1. 大数定律切比雪夫大数定律:用统计方法来估计期望的理论依据。E(X)≈1n∑nk=1xkE(X)\approx \frac{1}{n}\sum_{k=1}^{n}x_k 贝努利大数定律:事件 AA 发生的频率 nAn\frac{n_A}{n} 依概率收敛于事件 AA 的概率 pp。明确了频率的稳定性,当 nn 很大时,事件发生的频率与概率有较大偏差的可能性很小。p≈nAnp\approx \f原创 2016-10-27 22:41:53 · 7056 阅读 · 0 评论 -
数理统计学基本概念
1. 统计量1.1 样本均值统计量 X¯¯¯=1n∑ni=1Xi=1n(X1+X2+...+Xn)\overline{X}=\frac{1}{n}\sum_{i=1}^{n}X_i = \frac{1}{n}(X_1+X_2+...+X_n) 称为样本均值。定理:设总体 XX 的均值(即数学期望) E(X)=μE(X)=\mu 和方差 D(X)=σ2D(X)=\sigma^2 存在 ,则:E(X¯原创 2016-10-27 22:44:00 · 3330 阅读 · 0 评论