约束最优化问题求解:拉格朗日乘子法和KKT条件

本文介绍了约束最优化问题的解决方法,重点讲解了拉格朗日乘子法和KKT条件。拉格朗日乘子法用于等式约束优化,KKT条件则适用于包含不等式约束的情况。文中解释了拉格朗日函数的构造及求解过程,阐述了KKT条件的必要性和应用场景,并探讨了它们在最大熵模型、支持向量机等统计学习方法中的应用。
摘要由CSDN通过智能技术生成

在约束最优化问题中,常常利用拉格朗日对偶性(Lagrange duality)将原始问题转换为对偶问题,通过解对偶问题而得到原始问题的解。该方法应用在许多统计学习方法中,例如最大熵模型和支持向量机。

对于等式约束的优化问题,可以应用拉格朗日乘子法(Lagrange Multiplier)去求取最优值;如果含有不等式约束,可以应用KKT(Karush-Kuhn-Tucker)条件去求取。当然,这两个方法求得的结果只是必要条件,只有当是凸函数的情况下,才能保证是充分必要条件。

1. 拉格朗日乘子法和KKT条件

通常我们需要求解的最优化问题有如下几类:

  • 无约束优化问题,可以写为:

    minf(x);

  • 有等式约束的优化问题,可以写为:

    minf(x),s.t.hi(x)=0;i=1,...,n

  • 有不等式约束的优化问题,可以写为:

minf(x),s.t.gi(x)<=0;i=1,...,nhj(x)=0;j=1,...,m

对于无约束优化问题,常常使用的方法就是Fermat定理,即使用求取 f(x) 的导数,然后令其为零,可以求得候选最优值,再在这些候选值中验证;如果是凸函数,可以保证是最优解。

对于有等式约束的优化问题,常常使用的方法就是拉格朗日乘子法,即把等式约束 hi(x) 用一个系数与 f(x) 写为一个式子,称为拉格朗日函数,而系数称为拉格朗日乘子。通过拉格朗日函数对各个变量求导,令其为零,可以求得候选值集合,然后验证求得最优值。

对于有不等式约束的优化问题,常常使用的方法就是KKT条件。同样地,我们把所有的等式、不等式约束与 f(x) 写为一个式子,也叫拉格朗日函数,系数也称拉格朗日乘子,通过一些条件,可以求出最优值的必要条件,这个条件称为KKT条件。

1.1 拉格朗日乘子法

对于等式约束,我们可以通过一个拉格朗日系数 a 把等式约束和目标函数组合成为一个式子 L(a,x)=f(x)+ah(x) , 这里把 a h(x) 视为向量形式, a 是横向量, h(x)

  • 8
    点赞
  • 64
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值