强化学习(reinforcement learning)简介

本文介绍了强化学习的基本概念,它与有监督学习、无监督学习的区别。强化学习中,agent通过与环境互动,依据reward信号优化行为策略,寻找最大化奖励的policy。关键要素包括环境、奖励、动作和状态。相比于其他机器学习,RL没有教师信号,反馈延迟且序列化,其价值函数用于平衡即时和未来奖励。书籍推荐包括Sutton的《Reinforcement learning: an introduction》等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习可以分为三类,分别是 supervised learning,unsupervised learning 和reinforcement learning。
强化学习与监督学习,非监督学习之间的关系
强化学习是机器学习的一种方法,同样类似于深度学习,他们之间的关系可以用一幅图简单明了的描述:
在这里插入图片描述
RL与有监督学习、无监督学习的比较
  (1)有监督的学习是从一个已经标记的训练集中进行学习,训练集中每一个样本的特征可以视为是对该situation的描述,而其label可以视为是应该执行的正确的action,但是有监督的学习不能学习交互的情景,因为在交互的问题中获得期望行为的样例是非常不实际的,agent只能从自己的经历(experience)中进行学习,而experience中采取的行为并一定是最优的。这时利用RL就非常合适,因为RL不是利用正确的行为来指导,而是利用已有的训练信息来对行为进行评价。
  (2)因为RL利用的并不是采取正确行动的experience,从这一点来看和无监督的学习确实有点像,但是还是不一样的,无监督的学习的目的可以说是从一堆未标记样本中发现隐藏的结构,而RL的目的是最大化reward signal。
  (3)总的来说,RL与其他机器学习算法不同的地方在于:其中没有监督者,只有一个reward信号;反馈是延迟的,不是立即生成的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值