八皇后问题是这样一个问题:将八个皇后摆在一张8*8的国际象棋棋盘上,使每个皇后都无法吃掉别的皇后,即:每一行,每一列,每一条对角线只有一个皇后,一共有多少种摆法?
算法思想:
首先逐行遍历,设置queen[max]数组记录纵坐标(max为格子数8),每次落子前判断坐标(i,queen[i])是否满足条件,用check函数实现。若满足,进行下一行尝试。若不满足,尝试queen[i+1]...直到遍历到max-1为止;
记全局变量num初始为0;
当进行到max-1行时,此时若check函数通过,则打印八皇后表,每成功一次num+1;
最后打印num;
以下是完整代码:
//此程序通过依次尝试每一行,将纵坐标保存在queen数组中,满足条件则输出
#include<stdio.h>
#include<stdlib.h>
#define max 8
int queen[max],sum=0;
void showqueen()
{
int i;
for(i=0;i<max;i++)
{
printf("(%d,%d)",i,queen[i]);//每一行所对应的的列
}
printf("\n");
sum++;
}
int check(int n)
{
int i;
for(i=0;i<n;i++)
{
if(queen[i]==queen[n]||abs(queen[i]-queen[n])==(n-i))//同列或同对角线
return 1;
}
return 0;//若检查合格返回零
}
void put(int n)
{
int i;
for(i=0;i<max;i++)
{
queen[n]=i;//将皇后摆到当前循环到的位置,之所以这样,是为了判断对角线的方便。假设i行对应的列值为column[j],m行对应的列为column[n],若在同一对角线,则|column[j]-column[m]|=m-j
if(!check(n))
{
if(n==max-1)
{
showqueen();//如果摆好,则显示所有皇后
}
else
{
put(n+1);
}
}
}
}
int main()
{
put(0);//从横坐标为0依次尝试
printf("%d",sum);
return 0;
}
其结果如下: