【数据机构】最短路径之Dijkstra算法(迪克斯特拉算法)

 

最短路径问题是图论中的一个经典问题。

最短路径问题就是求图G(V,E)中某两个特定顶点间最短的路径长度。

本文介绍求最短路径的一个经典算法——Dijkstra算法,

它由荷兰图灵奖获得者、计算机科学家Dijkstra于1959年提出。

该算法能够有效地计算出某个特定顶点(称为源点),到其余所有顶点的最短路径,

即它能够很好地解决单源最短路径问题。

 


1. 问题介绍

1.1 题目描述

从一个城镇抵达另一个城镇时,有不同的路径可以选择,请帮助行人选择最短路径。
现在,已知起点和终点,请计算出要从起点到终点,最短需要行走多少距离。

1.2 输入

本题包含多组数据。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的规模和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息,每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下来的下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。

1.3 输出

对于每组数据,请在一行中输出最短需要行走的距离。
若不存在从S到T的路线,则输出-1。

1.4 样例输入

3 3
0 1 1
0 2 3
1 2 1
0 2
3 1
0 1 1
1 2

1.5 样例输出

2
-1

 


2. 解决方案

我们不作证明的给出以下结论:

  • 最短路径的特点
    • 源点到该点相邻(只含一条弧),该弧的权值最小;
    • 若已知源点到目标点的最短路径,则源点到达该路径中其他结点的路径,也是最短路径。
       

下面给出Dijkstra算法:

  • Dijkstra算法在运行过程中将顶点集合V分成两个集合S和T。
    •  S:已确定的顶点集合,初始只含源点s
    •  T=V-S:尚未确定的顶点集合
    • 算法反复从集合T中选择当前到源点s最近的顶点u,将u加入集合S,然后对所有从u发出的边进行松弛操作。

 


3. 代码

又到了重要的代码环节。。上干货

//注意该代码是无向图
//如果是有向图,在初始化图的时候只保留from->to 即可

#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
#include<queue>
#include<climits>

using namespace std;

const int MAXN = 200;
const int INF = INT_MAX;

struct Edge {
	int to;
	int length;
	Edge(int t, int l) :to(t), length(l) {}
};

struct Point {
	int number;
	int distance;
	Point(int n, int d) :number(n), distance(d) {}
	friend bool operator < (Point a, Point b)
	{
		return a.distance > b.distance;
	}
};

vector<Edge> graph[MAXN];
int dis[MAXN];
bool visit[MAXN];

void Dijkstra(int s)
{
	priority_queue<Point> myPriorityQueue;
	dis[s] = 0;
	myPriorityQueue.push(Point(s, dis[s]));
	while (!myPriorityQueue.empty())
	{
		int u = myPriorityQueue.top().number;
		myPriorityQueue.pop();
		visit[u] = true;

		for (int i = 0; i < graph[u].size(); i++)
		{
			int v = graph[u][i].to;
			int d = graph[u][i].length;
			if (!visit[v] && dis[v] > dis[u] + d)
			{
				dis[v] = dis[u] + d;
				myPriorityQueue.push(Point(v, dis[v]));
			}
		}
	}

	return;
}

int main()
{
	int n, m;
	while (scanf("%d%d", &n, &m) != EOF)
	{
		memset(visit, false, sizeof(visit));
		memset(graph, 0, sizeof(graph));
		fill(dis, dis + n, INF);

		while (m--)
		{
			int from, to, length;
			scanf("%d%d%d", &from, &to, &length);
			graph[from].push_back(Edge(to, length));
			graph[to].push_back(Edge(from, length));
		}
		int s, t;
		scanf("%d%d", &s, &t);
		Dijkstra(s);
		if (dis[t] == INF)
		{
			dis[t] = -1;
		}
		printf("%d\n", dis[t]);
	}

	return 0;
}

 


4. 总结

注意一下,上面的代码处理的是无向图的最短路径问题。

考虑一下,如果是有向图的最短路径问题如何解决呢?

事实上,只需要简单改变graph的构造方式即可,即注释掉

graph[to].push_back(Edge(from, length));

之后,本代码可解决有向图的最短路径问题。

 


图论这个章节难度还是挺大的,笔者看了挺长时间还是不得要领。。

在返校之前尽量把最小生成树问题也放上来吧。。

 

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值