Richard A.Brualdi 组合数学5th 课后习题答案
其实这篇文章只是用来记录我解题思路的笔记。
第一章 什么是组合数学
由于一题题做太花时间了,这里改成总结好了。
14,15,16,17,18,19,21,幻方题
对于幻方题,问题的重点是有以下几点:
a)每一条边的和为整数
b)每一个数为整数
抓住这两点是证明幻方不存在的关键。
20,4色问题
关键是给所有的元素分出不相邻类,所有不相邻的颜色分成一类。有多少类,便至少需要多少种颜色。4色定理即说明了,在平面种不可能出现一个区域与4个区域相邻,最多与三个区域相邻,所有4种颜色就够了。
22,23,24,37拉丁方问题
拉丁方问题的关键是,每一种标记的个数都是相同的,如果需要证明某些拉丁方是不存在的,就在他给的条件下,证明出某一个标记的数量大于其他标记(或者证明这个标记的奇偶性,即单数还是双数)
25,26,36,39,42完美覆盖问题
关键是染色的数量,解决问题的步骤是:
a)给棋盘染色,并确定每种颜色有多少块,通常的染色方法有黑白间隔,黑白横列,黑白纵列,或者斜着染,只要是能找到规律的(周期性),并且规律的跨度不能是大于多米诺骨牌的长度的,都可以。