Introductory Combinatorics 5th Solutions Chapter1 summary

本文提供了Richard A. Brualdi的《组合数学》第五版第一章的习题解答,涵盖幻方、4色问题、拉丁方、完美覆盖问题以及NIM游戏等。解题关键在于理解每个问题的核心概念,例如幻方的整数性质、4色定理的应用、拉丁方的标记平衡、完美覆盖的染色策略以及NIM游戏的必胜策略。
摘要由CSDN通过智能技术生成

Richard A.Brualdi 组合数学5th 课后习题答案

其实这篇文章只是用来记录我解题思路的笔记。

第一章 什么是组合数学

由于一题题做太花时间了,这里改成总结好了。

14,15,16,17,18,19,21,幻方题
对于幻方题,问题的重点是有以下几点:
a)每一条边的和为整数
b)每一个数为整数
抓住这两点是证明幻方不存在的关键。

20,4色问题
关键是给所有的元素分出不相邻类,所有不相邻的颜色分成一类。有多少类,便至少需要多少种颜色。4色定理即说明了,在平面种不可能出现一个区域与4个区域相邻,最多与三个区域相邻,所有4种颜色就够了。

22,23,24,37拉丁方问题
拉丁方问题的关键是,每一种标记的个数都是相同的,如果需要证明某些拉丁方是不存在的,就在他给的条件下,证明出某一个标记的数量大于其他标记(或者证明这个标记的奇偶性,即单数还是双数)

25,26,36,39,42完美覆盖问题
关键是染色的数量,解决问题的步骤是:
a)给棋盘染色,并确定每种颜色有多少块,通常的染色方法有黑白间隔,黑白横列,黑白纵列,或者斜着染,只要是能找到规律的(周期性),并且规律的跨度不能是大于多米诺骨牌的长度的,都可以。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值