Introductory Combinatorics 5th Chapter2 problem summary

Richard A.Brualdi 组合数学5th 课后习题答案

其实这篇文章只是用来记录我解题思路的笔记。

第二章 排列与组合

1.思路:分析清楚两个问题:a)要填几个空 b)每个空的约束是什么

2.这题与第一题的区别就在于,多了一个属性:花色。不同属性之间的排列的乘法原理,所以先排列花色,再对每个花色部分进行数字的全排列。

3.发牌是具有排列属性,手牌是组合。

4.把数字分解成质数幂次相乘的形式是关键。

5.我的理解是,先把数字分解成题4中的形式,然后看2,5的幂次,这两个幂次中较小的那个就是10这个因子数的最大幂。然后这道题中2的幂次一定大于5的幂次,所以主要就看5的幂次。

6.这道题用到的是加法原理。比较麻烦的是4位数里面的分析。

7.8.9 这两题都是循环排列的问题,对于这种问题,如果使用乘法原理,第一次使用时要把循环排列的数量去掉,之后相当于顺序就固定了。

10.这道题要注意:
a)这里有两类人,每一类里面的人都是一样的,没有区别。(我在这里犯了一个错误:以为第一问可以这么做:(12,2)*(20,3),这里就忽略了同一个类别里面的人是一样的这一点)
b)第二位要分3个情况分析:假设那个男士是a,女士是b,则有3种情况:
两个单独在的情况,和一个都在的情况。然后在各个情况下分析。最后相加。

11.因为不能连续,所以可以理解为把3本书插进17本书里,即(18,3)。

另外一个思路是,我在1~18个数字里任选3个数b1,b2,b3,并且让最小的数小标最小,然后构造c1,c2,c3,让c1=b1,c2=b2+1,c3=b3+2,就会发现,c1,c2,c3就是1 ~ 20里面选3个不相邻的数的所有组合数。

相反,我们假设已经已经找到了3个不相邻的数d1,d2,d3,构造e1,e2,e3,使e1=d1,e2=d2-1,e3=d3-2,让所有不相邻的3组合,最大的减2,中间的减1,得到的就是取址范围缩小2的(即1 ~ 18),不考虑相邻因素的3组合数。

我个人觉得还是用插空法理解最直观,n个数里取r个不相邻组合,先取n-r个数,然后在这些数的缝里插入这r个数。

12.我的分析方式是,单独考虑全能球员的情况,然后把所有情况加起来:
记后卫为DF,边卫为BF,没上场为0,记(x,x)为两全员的分配情况,

0个全能 1个全能 2个全能
(0,0) (0,BF) (BF,0),(0,DF),(DF,0) (BF,BF),(BF,DF),(DF,BF),(DF,DF)

然后把每种情况的剩余球员用组合填充上去,结果以上全部加起来。

13.a)两个思路:
—1. 最简单是思路是(100,25)(75,35)
—2.先将这100个同学进行全排列,即100!,此时认为这100个同学都是不同的,然后分成3个宿舍,每个宿舍里的同学认为是同一类,所有,要再100!的基础上除以他们的排列冗余度,即25!35!40!。所以结果为100!/(25!35!40!)

b)我有一半的机会进入c宿舍。
因为只有100个位置,所以所有宿舍都得住满,唯一的不同就男生和女生进入c宿舍那那部分人是怎么安排的。所有答案就是(50,25)(50,15)。反过来想也是一样的,先选进入A宿舍的同学,再选进入B宿舍的同学,剩下的住进C宿舍,(50,25)(50,35)=(50,25)(50,15).

14.这题用的是排列,认为每个同学都是不一样的。P(8,5)P(8,4)P(7,5)

15.a)必然有5个女士没被选到,所以现在20个里面选5个,然后剩下的进行全排列(15名男生编号1 ~ 15,全排列后就把所有组合确定了)
b)同理先把不被配对的人选出来,然后剩下的全排列。

16.举个例子:10个人里面选择2个班委和10个人里面选择8个人不做班委的方案数是一样的。

17.a)每一行只能有一台车,所以是6!(第一行6选1,第二行5选1,。。。)
b)在a的基础上选两台车涂上颜色。6!(6,2)

18.19两题是一类问题:
我的思路有两种:
a)乘法原理,每种颜色的车先确定他们可以放置的区域,如2台红色的车,先选两行,再选两列,这样就划分出一个2x2的位置,然后再在这2X2的位置为每一辆车选择一行(因为不能相互攻击,所以每一行只能放一辆车,不攻击的方案数必然等于按行分配的方案数,因为为每一辆车分配到单独的一行时,那必然存在唯一一种情况,使得他们互不攻击)。
b)利用冗余度计算:设12X12的棋盘,我们先认为所有的车都是不同的,然后在棋盘上的不攻击摆法是12!12!,然后除以染色的车的冗余度,比如5红3蓝,即5!,3!,最后还剩下4X4的空区域,这里的冗余度是(4!)2,所有答案就是 (12!12!)/(5!3!4!4!)。
对于为什么空区域的冗余度是平方,我的理解是除法原理:因为空区域的所有方案是(4!)2,而我们要将这个区域的所有排列看成是一样的,所有就除以(4!)2

20.在所有循环排列的方案中去掉0在9对面的方案数,即 10个元素的循环排列数,减去8!(即固定0和9的位置后,剩下8个位置全排列)

21.利用冗余度计算,先确定多重集合{A1,D2,R1,E2,S3},结果为9!/2!2!3!

22.这道题比较特殊的地方在于:如果出现了并列过线的情况,就会使名次减少一位,即不可能出现有并列第一名的同时,还有第四名的情况。所以不能使用隔板法来解这道题。
所以只能分情况讨论:

存在4个名次 存在3个名次 存在2个名次 存在1个名次
(1,1,1,1,) (2,1,1),(1,2,1),(1,1,2) (3,1),(2,2),(1,3) (4)

然后各自计算每种情况下的方案数,如(1,1,1,1,)为4!,(1,2,1)为4!/2!,(2,2)为4!/2!2! (这里用的是除以冗余度的计算方法)。
结果为所有方案加起来。

23.冗余度解法:52!/(13!)4

24.利用乘法原理解题即可:设这两个人为AB,先选A的座位,再选人填满A的车厢,剩下直接全排列。

25.这道题和24题的题目属于没有讲清楚的类型,这个车厢道的座位对这道题的解法影响很大,如果几种情况:a)车厢里面没有座位,但是只能乘坐4个人,这个时候每个车厢的冗余度就是4!,b)车厢里面有座位,但是座位是可旋转的环形的,这个时候的每个车厢的冗余度就是座位的数目,c)如果缆车其实是摩天轮,那么在A选完车厢之后,位置才固定下来,d)如果每一排的左右其实是无所谓的,那么又会有影响,类似于a情况。
如果没说清楚的话,小题就选最简单的做法,大题就全部分析一遍呗。

26.用冗余度解题。首先mn!,第一题冗余度是(n!)m,第二题在一的基础上除以m!。

分两个情况讨论:a)(0,0)被占 b)(0,0)没有被占。
a)情况下就把问题转换为7X7棋盘,摆4台颜色相同的不攻击车。
b)情况,必然需要在第一行除了第一个位置外放一台车,第一列除第一个位置外放一台车,然后问题转换为在6X6棋盘里摆3台不攻击车。
结果是以上相加。

第一题比较简单,从家里到公司共17步,里面往东需要走9步,即在17步里面选9步往东走即可。
第二题比较复杂,题意应该是(4,3)和(4,4)为水域,所以所有以这两个点为起点或终点的路径都要去掉,因为只能走17步,所以只有两个方向:向东和向北,所以以(4,3)为起点,向东向北,(4,3)为终点,向东向北,以(4,4)为起点,向东向北,(4,4)为终点,向东向北,一共8条路径是不能走的。
然后对逐条路径进行分析:如以(4,3)为起点,向东的路径,起点是(4,3)终点是(5,3),通过这条路径的所有上班的路其实就是起点到(4,3)所有的路径 X (5,3)到终点的所有路径。
依次对所有情况分析,结果加总即可。
这道题翻译的很烂,我有点每没读懂,但是关键的地方应该都差不多。

29.记N=1+n,首先对N进行循环排列,即(N!)/N,然后再除以各类数的冗余度。即可得证。
( n + 1 ) ! ( n + 1 ) n 1 ! n 2 ! ⋯ n k ! = n ! n 2 ! ⋯ n k ! \frac{\left ( n+1\right )!}{(n+1)n_{1}!n_{2}!\cdots n_{k}!} = \frac{n!}{n_{2}!\cdots n_{k}!}

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值