概率论-2.4 常用离散分布(待补充期望方差证明)

本文介绍了概率论中的基本概念,包括伯努利试验、无记忆性、0-1分布、二项分布、泊松分布、超几何分布和几何分布等。这些分布分别描述了不同类型的随机试验结果,如试验发生的次数、首次出现特定事件的试验次数等,并给出了它们的期望和方差。此外,还讨论了在特定条件下如何用泊松分布近似二项分布,以及超几何分布与二项分布的关系。
摘要由CSDN通过智能技术生成

伯努利试验(Bernoulli experiment):在同样的条件下重复地、相互独立地进行的一种随机试验,其特点是该随机试验只有两种可能结果:发生或者不发生

无记忆性:前m次试验不影响后n次试验

0-1分布:1次伯努利试验,试验发生次数
分布列:p(k)=pk*(1-p)(1-k),k=0,1
期望:p
方差:p*(1-p)

b(n,p)
二项分布:n次伯努利试验,试验发生次数
分布列:p(k)=(n k)’ pk*(1-p)(n-k),k=0,1,2,…
期望:np
方差:np(1-p)


泊松分布:c为参数,c=n*p,k为试验发生次数
分布列:p©=e(-c)*(ck / k!)
期望:c
方差:c
意义:当n较大,p较小时可做二项分布计算的近似

h(n,N,M)
超几何分布:设有N件产品,其中有M件不合格产品,随机抽取n件,其中不合格品的件数k
分布列:p(k)=((M k)’(N-M n-k)’) / (N n)’
期望:n
(M / N)
方差:nM*(N-M)*(N-n) / (N^2(N-1))
意义:当N>>M时,每次抽取p=M / N几乎不改变,近似二项分布

Ge§
几何分布:伯努利试验中事件A首次出现时的试验次数(无记忆性)
分布列:p(k)=(1-p)^(k-1)*p
期望:1 / p
方差:(1-p) / p^2

Nb(r,p)
负二项分布(帕斯卡分布):伯努利试验中事件A发生r次时的试验次数
分布列:p(k)=p*(k-1 r-1)’p^(r-1) * (1-p)^((k-1)-(r-1))= (k-1 r-1)’ * p^r * (1-p)^(k-r)
期望:r / p
方差:r
(1-p) / p^2
意义:r=1时,退化为几何分布;与二项分布的差别就在最后一次试验事件是否发生

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值