电压源电流源电路符号及2B法

一、理想电压源与理想电流源

理想电压源圆圈中的线与电路重合
理想电流源圆圈中的线与电路垂直

二、受控电压源与受控电流源

理想电压源菱形中的线与电路重合
理想电流源菱形中的线与电路垂直

三、大写符号表示恒定不变,小写符号表示电压或电流是变化的

2b法步骤:
第一步:画出电路拓扑图
n个节点
b条支路
2b个未知数(设每条支路的电流与电压为未知数)

第二步:列出n-1个独立KCL方程

第三步:列出b-n+1个独立KVL方程

第三步:根据条件列出b个独立VCR个方程

第四步:2b个未知数,2b个独立方程,有唯一解

<think>嗯,用户问的是怎么在二阶RC等效电路模型下用卡尔曼滤波估计SOC,特别是转移矩阵H的推导。首先,我得先回忆一下二阶RC模型的结构。这个模型通常包括一个电压源(OCV,开路电压)和两个RC并联电路,分别用来模拟电池的动态特性。可能还有串联电阻R0。SOC在这里应该和OCV有关系,通常OCV是SOC的函数,所以可能需要先明确OCV(SOC)的表达式。 然后,卡尔曼滤波的状态方程和观测方程是关键。扩展卡尔曼滤波(EKF)因为系统是非线性的,所以需要对状态方程和观测方程进行线性化。转移矩阵H应该是观测方程的雅可比矩阵,也就是观测方程对状态变量的偏导数。观测方程这里应该是指电池的端电压,它由OCV减去各个电压降,比如R0上的压降和两个RC环节的电压。 接下来,具体推导H矩阵。假设状态变量包括SOC、U1和U2(两个RC环节的电压)。观测方程是Vt = OCV(SOC) - I*R0 - U1 - U2。那么H矩阵就是观测方程对这三个状态变量的偏导数。OCV对SOC的导数就是d(OCV)/d(SOC),而U1和U2的导数应该是-1和-1。但要看具体的状态变量顺序,假设状态向量是[SOC; U1; U2],那么H矩阵应该是[dOCV/dSOC, -1, -1],因为观测方程对SOC的导数是dOCV/dSOC,而对U1和U2的导数是-1。 不过,可能用户提供的引用里有更详细的信息。比如引用[3]提到EKF在二阶RC模型中将电路参数和状态变量作为状态向量,所以需要明确状态方程和观测方程的具体形式。观测方程中的Vt可能还涉及到电流I,所以在求导的时候要考虑I的影响吗?比如,如果R0是已知的,那么I是输入,不是状态变量,所以在H矩阵中不需要对I求导,只需要对状态变量求导。 另外,引用[4]中的MATLAB代码可能涉及到具体的数据处理,比如导入电流、电压数据,但推导H矩阵主要还是数学上的步骤。需要确认OCVSOC的关系是否非线性,如果是的话,EKF的H矩阵就是在这个点处的线性化,即求偏导数。 总结来说,推导H矩阵的步骤应该是: 1. 确定状态变量,比如SOC、U1、U22. 写出观测方程,即Vt = OCV(SOC) - I*R0 - U1 - U2。 3. 对观测方程分别对每个状态变量求偏导: - 对SOC的偏导是d(OCV)/d(SOC) - 对U1的偏导是-1 - 对U2的偏导是-1 4. 因此,H矩阵就是这三个偏导数组成的行向量。 需要检查是否正确,可能还要考虑是否有其他状态变量或者参数被估计,比如R0、R1、C1等是否作为状态的一部分。但根据常见做,参数辨识可能和状态估计分开,或者作为状态的一部分。但用户的问题可能假设参数已知,只估计状态变量,所以H矩阵的推导如上述步骤。 可能用户还希望看到具体的数学表达式,比如用LaTeX表示H矩阵的结构。同时,需要引用相关的参考文献,比如引用[3]提到EKF在二阶RC模型中的应用,涉及雅可比矩阵的推导,所以可以引用这个部分。</think>### 二阶RC模型卡尔曼滤波转移矩阵H推导详解 #### **1. 二阶RC等效电路模型** 模型由开路电压$V_{oc}(SOC)$、欧姆内阻$R_0$及两个RC并联网络组成,状态方程包含: - 状态变量:$x = \begin{bmatrix} SOC \\ U_1 \\ U_2 \end{bmatrix}$(SOC、极化电压$U_1$和$U_2$) - 观测变量:$y = V_t = V_{oc}(SOC) - I \cdot R_0 - U_1 - U_2$ [^3] #### **2. 观测方程H矩阵定义** 观测方程非线性特性体现在$V_{oc}(SOC)$上。扩展卡尔曼滤波(EKF)需对观测方程线性化,**转移矩阵$H$即观测方程对状态变量的雅可比矩阵**: $$ H = \frac{\partial y}{\partial x} = \left[ \frac{\partial V_t}{\partial SOC}, \frac{\partial V_t}{\partial U_1}, \frac{\partial V_t}{\partial U_2} \right] $$ #### **3. 具体推导步骤** - **对SOC求导**:$\frac{\partial V_t}{\partial SOC} = \frac{dV_{oc}(SOC)}{dSOC}$ 需通过实验标定$V_{oc}(SOC)$曲线,例如多项式拟合$V_{oc} = a \cdot SOC^3 + b \cdot SOC^2 + c \cdot SOC + d$,则导数为$3a \cdot SOC^2 + 2b \cdot SOC + c$ [^1]。 - **对极化电压求导**:$\frac{\partial V_t}{\partial U_1} = -1$,$\frac{\partial V_t}{\partial U_2} = -1$ 因$U_1$和$U_2$直接线性影响端电压。 最终得: $$ H = \begin{bmatrix} \frac{dV_{oc}}{dSOC} & -1 & -1 \end{bmatrix} $$ #### **4. 实现验证** MATLAB代码中需通过数值方或符号运算实现雅可比矩阵计算,例如: ```matlab % 假设V_ocSOC关系为多项式函数 dV_oc = 3*a*soc^2 + 2*b*soc + c; H = [dV_oc, -1, -1]; ``` 此矩阵用于卡尔曼增益计算和状态更新[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值