前提知识:
1、lim(b->a+0) (a, b]=空集
2、lim(a->b-0) (a, b]=空集+{b}
3、lim(b->a+0) [a, b)= {a}+空集
4、lim(a->b-0) [a, b)=空集
分布函数定义的两种定义
设x1<x2
第一种定义:
F(x2)-F(x1)=P(x1<X<=x2)
第二种定义:
F(x2)-F(x1)=P(x1<=X<x2)
先讨论第一种定义F(x2)-F(x1)=P(x1<X<=x2)的连续性
右连续即lim(x2->x1+0) (F(x2)-F(x1))=0
右连续证明
lim(x2->x1+0) (F(x2)-F(x1))= lim(x2->x1+0) P(x1<X<=x2)
上式随机变量X的区间:
lim(x2->x1+0)(x1 x2]=空集(由前提知识1可得)
P(空集)=0,于是有lim(x2->x1+0) (F(x2)-F(x1))=0
lim(x2->x1+0) F(x2)=F(x1)右连续成立
左连续即lim(x1->x2+0) (F(x2)-F(x1))=0
左连续证明
lim(x1->x2-0) (F(x2)-F(x1))= lim(x1->x2-0) P(x1<X<=x2)
上式随机变量X的区间:
lim(x1->x2-0)(x1 x2]=空集+{x2} (由前提知识2可得)
P(空集+{x2})=0+ P({x2}),于是有lim(x1->x2-0) (F(x2)-F(x1))=P({x2})
lim(x2->x1-0) F(x2)=F(x1)+ P({x2})
于是有P({x2})=0时,左连续成立,否则不左连续
当X为连续随机变量时,对于任意一个xi,都有P({xi})=0
当X为离散随机变量时,并非任意一个xi,都有P({xi})=0
总结
X为连续随机变量时,能保证分布函数左右连续
X为离散随机变量时,仅能保证分布函数右连续
对于第二种定义在连续性上的讨论步骤与上面基本相同
最后的结论
X为连续随机变量时,能保证分布函数左右连续
X为离散随机变量时,仅能保证分布函数左连续
对于此证明有待考量的地方
1、前提知识的几条都是我自己想出来的,不知道是否合理
2、在右连续证明的第一步到第二步之间之间其实少了一个步骤(左连续也类似)
lim(x2->x1+0) P(x1<X<=x2)如何到P(lim(x2->x1+0) x1<X<=x2)
对此我想到了用可列可加性去证明(极限与可列转换),不知是否可行
其他方法暂时没想到,回头问问老师再来补充吧