概率论-4.1 大数定律

本文详细介绍了概率论中的切比雪夫不等式及其在证明伯努利大数定律中的应用。通过解析随机变量序列的算术平均数与概率收敛的关系,阐述了大数定律的一般形式,包括马尔科夫条件、辛钦大数定律和辛钦大数定律的独立同分布情况。这些理论是理解统计学和随机过程中的稳定性与收敛性的关键。
摘要由CSDN通过智能技术生成

切比雪夫不等式(证明):
P(| X-E(X) |<a)>=1-Var(X) / a^2

伯努利大数定律(n重伯努利试验):
记Sn为n重伯努利试验中事件A出现的次数,称Sn/n为事件A出现的频率
设p为每次试验事件A发生的概率则,对任意a>0都有
lim(n->正无穷) P(| Sn/n-p |<a)=1
证明:
Var(Sn/n)= Var(Sn)/n2=n*p*q/n2=p*q/n
由切比雪夫不等式得
lim(n->正无穷) [P(| Sn/n-p |<a)]>=lim(n->正无穷) [1-Var(Sn/n) / a^2]=1
于是有lim(n->正无穷) P(| Sn/n-p |<a)=1
结论:频率的稳定于概率

大数定律的一般形式:
随机变量序列的算术平均数
概率收敛到
其均值的算术平均

设Sn为n个随机变量(X1,…,Xn)值和
Sn/n=Sum(Xi)/n,p=Sum(E(Xi))/n
若有lim(n->正无穷) P(| Sum(Xi)/n-Sum(E(Xi))/n |<a)=1
则称随机变量序列{Xi}服从大数定律

切比雪夫大数定律(方差存在):
设随机变量序列{Xi}为一列两两不相关的随机变量序列,且每个Xi方差存在,则{Xi}服从大数定律
证明:lim(n->正无穷) P(| Sum(Xi)/n-Sum(E(Xi))/n |<a)=1
由两两不相关可得
Var(Sum(Xi)/n)=Sum(Var(Xi))/n^2 <= nMax{Var(Xi)}/n^2=Max{Var(Xi)}/n
由切比雪夫不等式得
P(| Sum(Xi)/n-E(Sum(Xi)/n) |<a)>=1-Max{Var(Xi)}/(n
a^2)
lim(n->正无穷) P(| Sum(Xi)/n-Sum(E(Xi))/n |<a)=1
证毕

马尔可夫条件:
lim(n->正无穷) Var(Sum(Xi))/n^2 -> 0
马尔代夫大数定律(仅需要马尔可夫条件):
设有随机变量序列{Xi},若有马尔可夫条件成立,则{Xi}服从大数定律
证明:lim(n->正无穷) P(| Sum(Xi)/n-Sum(E(Xi))/n |<a)=1

lim(n->正无穷) Var(Sum(Xi))/n^2 -> 0
推出
lim(n->正无穷) Var(Sum(Xi)/n) -> 0

由切比雪夫不等式可得
P(| Sum(Xi)/n-E(Sum(Xi)/n) |<a)>=1-Var(Sum(Xi)/n) / a^2
lim(n->正无穷) P(| Sum(Xi)/n-Sum(E(Xi))/n |<a)=1
证毕

辛钦大数定律(独立同分布,期望存在):
设随机变量序列{Xi}为独立同分布,若Xi的数学期望存在,则{Xi}服从大数定律
证明:
参考期望的定义可证

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值