机制设计,沙普利值

合作博弈

• 玩家分成团队来完成任务

• 团队成员可以自由分配利润

• 利润应该如何分配?

诱导子图游戏

• 我们得到了一个带权图

• 玩家是节点;一个联盟的价值是子图中所有边的权值之和。

• 模型:合作网络,团队形成。

左边圆圈中有三个节点,对应价值为 3+2-1=4

右边圆圈中有三个节点, 对应价值为 1+2+7=10

如果圆圈中只有一个节点,对应价值为0

网络流量游戏

• 我们得到了一个带权重的有向图

• 玩家是边;联盟的价值是它从s到t可以传递的最大流量的价值。

• 应用:计算机网络、交通流量、交通网络。

加权投票游戏

• 我们得到了一个权重列表和一个阈值。

• (w_1, ..., w_n ; q)

• 每个玩家 i 都有一个权重 w_i;如果联盟的总权重至少为 q(胜利),则其价值为1,否则为(失败)。

• 应用:议会、联合国安全理事会、欧盟成员国理事会。

费用分摊

• 分摊出租车费或账单

• 分摊公共项目的成本

合作游戏

• 一组玩家 -    N = \{ 1,...,n \}

• 估值函数 -   v: 2^N \rightarrow R_{\geq 0}

•  v(S ) – 联盟的价值 Sv(\phi) = 0

•  CS – 的一个划分 N;一个联盟结构。

•   OPT(\varsigma ) = max_{CS} \sum_{S\in CS}v(S)

• 效率:一个向量 x\in R^n_{\geq 0}  满足 \sum _{i\in N}x_i =v(N)

• 个体合理性:x_i \ge v(i)  对所有  i \in N

• 归因:满足效率 + 个体合理性的向量

合作游戏的属性

• 一个游戏 \varsigma =<N,v> 被称为单调 (monotone) 如果对任意的 S\subseteq T\subseteq N: v(S) \le v(T)

• \varsigma 是简单 (simple) 的,如果它是单调并且 v(S) \in \{0,1\} \ for \ all \ S

• \varsigma 是超加 (superadditive) 的,如果对于不相交的 S,T \subseteq N: v(S)+v(T) \le v(S \cup T)

• \varsigma 是凸 (convex) 的,如果对于 S \subseteq T \subseteq N \ \& \ i \in \frac{N}{T}: v(S \cup \{i\}) - v(S) \le v(T \cup \{i\})-v(T)

示例

在一个游戏中有三个玩家 

v(1)=v(2)=v(3)=0 \\ v(1,2)=4 , \ v(1,3)=5 , \ v(2,3)=6 \\ v(1,2,3 )=7

1. 这个游戏是单调的, v(1)=v(2)=v(3) < v(1,2) , \ v(1,3) , \ v(2,3) < v(1,2,3)

2. 这个游戏不是简单的,因为其中值并不全是0或者1

3. 这个游戏是超加的,因为首先 v(T) \le v(T), v(1)...=0, v(T) \le v(S \cup T)

4. 这个游戏不是凸的,假设S={1}, T={1,2}, i=3 

v(S \cup \{i\}) - v(S) =5-0=5

v(T \cup \{i\})-v(T)=7-4=3

合作游戏中的收益分配 核心与沙普利值

核心

• 一个归因  \vec{x} 在核心中, 如果满足以下条件:\sum_ {i \in S}x_i =x(S)\ge v(S), \forall S \subseteq N

• 每个玩家子集至少获得 它自己可以获得的。

• 一个稳定性的概念;没有子集可以偏离。

核心是满足线性约束的 R^n 中的一组向量。 \sum _{i \in N}x_i=v(N) \ ; \ \sum_{i \in S} x_i \ge v(S), \forall S \subseteq N

• 对于三个玩家, N= \{1,2,3\}

x_1+x_2+x_3 = v(N)\\ x_i \ge v(\{i\}) , \ \forall i \in \{1,2,3\}\\ x_i+x_j \ge v(\{i,j\}), \ \forall i,j \in N

图中,点1坐标为(V(N),0,0), 点2坐标为(0, V(N),0),点3坐标为(0,0,V(N))

1和3的中点坐标为(\frac{V(N)}{2},0,\frac{V(N)}{2}); 三角形中心点坐标为(\frac{V(N)}{3}, \frac{V(N)}{3},\frac{V(N)}{3})

对于x_1:  x_1+x_2+x_3 = v(N)\\ x_2+x_3 \ge v(\{2,3\}), \\ v(\{1\}) \leq x_1 \le v(N)-v(\{2,3\})

示例

一个游戏中有三个玩家

v(1)=v(2)=v(3)=0 \\ v(1,2)=4 , \ v(1,3)=5 , \ v(2,3)=6 \\ v(1,2,3 )=7

1. 核心是空的吗?

核心是空的。 

x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_1+x_2 \ge 4, x_1+x_3 \ge 5, x_2+x_3 \ge 6, x_1+x_2+x_3=7

x_1+x_2 +x_1+x_3 + x_2+x_3 =2(x_1+x_2 +x_3) \ge 15\Rightarrow x_1+x_2 +x_3 \ge 7.5

不满足起始条件 x_1+x_2+x_3=7 

2.  v(1,2,3 ) 需要增加多少才不为空?

至少增加0.5

 v(1,2,3 )=7.5

x_1+x_2 = 4, x_1+x_3 = 5, x_2+x_3 = 6\Rightarrow x_1=3.5,x_2=2.5,x_3=1.5

核心是否为空?

• 简单游戏: 游戏被称为简单,如果 v(S) \in \{0,1\} 对于所有 S \subseteq N,并且它是单调的(向联盟添加玩家不会降低其价值)。

• 价值为1的联盟是胜利的; 价值为0的联盟是失败的。

• 如果一个玩家是每一个胜利联盟的成员(没有她就不能赢),那么她被称为否决玩家。

示例

一个游戏中有三个玩家

v(1)=v(2)=v(3)=0 \\ v(1,2)=0 , \ v(1,3)=1 , \ v(2,3)=1 \\ v(1,2,3 )=1

是否有否决玩家?

 玩家3是否决玩家。根据以下定理,游戏分配为(0,0,1)

定理:

• 设 \varsigma = <N,v> 是一个简单游戏; 当且仅当 \varsigma 有否决玩家时,才有 Core(\varsigma) \neq \phi。 实际上,核心只有那些 仅在否决玩家之间分配收益的向量。

• 如果我们给非否决玩家一个正的收益,那么 剩下的玩家可以一起偏离。

• 如果我们只给否决玩家一个正的收益,那么由于任何 胜利的联盟必须包含所有的否决玩家,所以没有 有益的偏离。

假设玩家2和3都是否决玩家,(0, x, 1-x), 0\le x \le 1 在此状态下否决玩家的分配可以为0.

定理:

 诱导子图游戏的核心 当且仅当图没有负切割时不为空。

证明:我们首先证明,如果没有负切割,那么核心不为空。 考虑这样的收益分配:为每个节点分配与其相连的边的值的一半。

\phi_i =\frac{1}{2} \sum_{j \in N}w(i,j) 需要证明 \phi (S) \ge v(S) 对于所有的 S \subseteq N

\phi_s = \sum_{i\in S}\phi_i =\frac{1}{2} \sum_{i\in S} \sum_{j \in N}w(i,j)\\ = \sum_{i\in S} \sum_{j \in S}\frac{1}{2} w(i,j) + \sum_{i\in S} \sum_{j \in N/S}\frac{1}{2} w(i,j)\\ =v(S)+\frac{1}{2} Cut(S, N/S)

由于没有负切割,最后的表达式至少为 v(S)。注意:从上述内容可以看出,效率,即\phi(N)=v(N) ,是显而易见的(只需设置S=N)。此外,由于没有负切割,所以收益向量的非负性也成立。

现在,假设存在某个负切割;即,存在某个S \subseteq N 使得

\sum_{i\in S} \sum_{j \in N/S}w(i,j) <0 取任何满足效率的 \vec{x} ;那么

x(S)+x(N/S) = \sum_{i \in N}x_i=v(N) = \phi(N)=\phi (S)+ \phi (N/S)

此处重复\phi_i =\frac{1}{2} \sum_{j \in N}w(i,j)

因此:

x(S)-v(S)+x(N/S)-v(N/S) \\ =\phi(S)-v(S)+\phi(N/S)-v(N/S)\\ \sum_{i\in S} \sum_{j \in N/S}\frac{1}{2} w(i,j)+\sum_{i\in N/S} \sum_{j \in S}\frac{1}{2} w(i,j)=\\ Cut(S,N/S) <0

所以,要么是 x(S)<v(S) 的情况,要么是 x(N/S)<v(N/S) 的情况; 因此不能在核心中。

收益分配\phi_i是特殊的:事实上,它是诱导子图游戏的沙普利值。

公平的公理方法 正义的规范方法

策略性考虑:  纳什均衡 核心结果 机制设计

公平性考虑:  沙普利值 纳什讨价还价解决方案 公平分配物品

问题:给定一个合作游戏 v : 2^N \rightarrow R_+,收入 v(N) 应该如何公平地分配?

这种方法应该满足哪些属性?

• 效率 : \sum_{i \in N }\phi_i =v(N)

•对称性 : 对称玩家得到相同的支付 v(A \cup \{i\}) = v(A \cup \{j\}) \ \ \ for \ all \ A \ such \ that \ i,j\notin A

• 虚拟性 : 虚拟玩家不被支付

v(A \cup \{i\}) =v(A) \ \ for \ all \ A \ such \ that \ i\notin A

• 线性 : 

\phi_i(\varsigma_1 )+\phi_i(\varsigma_2) =\phi_i(\varsigma_1 +\varsigma_2)\\ \phi_i(a\cdot \varsigma_1 )= a \cdot \phi_i(\varsigma_1 )

沙普利值满足上述所有条件。

沙普利值 

定义

给定玩家 i 和一组S \subseteq N ,i 对 S 的边际贡献是 m_i(S) =v(S \cup \{i\})-v(S)

i 加入 S 可以贡献多少?

给定玩家的一个排列\sigma \in \prod (N) ,让 i 在  \sigma 中的前驱是 P_i(\sigma)=\{j \in N | \ \sigma (j) < \sigma (i)\}

我们写作 m_i(\sigma) =m_i(P_i(\sigma))

沙普利值

假设我们随机均匀地选择玩家的顺序。玩家 i 的沙普利值是

Sh_i =E[m_i(\sigma)] =\frac{1}{n!} \sum_{\sigma \in \prod (N)}m_i(\sigma)

计算沙普利值

我们得到了一个WVG(加权投票游戏)w_1=1, w_2=1, w_3=3,w_4=4;q=5  计算所有玩家的沙普利值

当玩家1之前的玩家的组合权重恰好为4时,玩家1才可能是关键的(pivotal)。

可以由 \{2,3\} \ or \ \{4\}

1. 根据对称性, Sh_2 =Sh_1 =\frac{1}{6}

2. 玩家4总是关键的,除非她是最后一个或第一个。

Pr_{\sigma \sim U(\prod (N))}[4 \ is \ 2nd \ or \ 3rd \ in \ \sigma]=\frac{1}{2} 所以 Sh_4=\frac{1}{2}

3. 通过效率,Sh_3=1-Sh_1-Sh_2-Sh_4=1-\frac{1}{6}-\frac{1}{6}-\frac{1}{2}=\frac{1}{6}

在诱导子图游戏中的沙普利值

定理:在一个诱导子图游戏中,有 \phi_i =\frac{1}{2} \sum_{j \in N}w(i,j)

对于每个玩家 i ,她对集合 S \subseteq N /\{i\} 的边际贡献等于 \sum_{j \in N}w(i,j) 。

对于每个玩家 j \neq i ,让 I(j \in P_i(\sigma)) 是一个指示随机变量,如果 j 在 \sigma 中出现在 i 之前则为1,否则为0。

示例

一个游戏中有三个玩家

v(1)=v(2)=v(3)=0 \\ v(1,2)=0 , \ v(1,3)=1 , \ v(2,3)=1 \\ v(1,2,3 )=1

沙普利值是多少?

123->3 , 132-> 3

213->3 , 231->3

312->1 , 321->2

Sh_3= \frac{4}{6} \\ Sh_1= \frac{1}{6} \\ Sh_2= \frac{1}{6}

定理: 唯一满足效率、线性性、虚拟性和对称性的值是沙普利值。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值