keras
-牧野-
这个作者很懒,什么都没留下…
展开
-
keras 入门模型训练
# -*- coding: utf-8 -*-from keras.models import Sequentialfrom keras.layers import Densefrom keras.models import load_modelimport matplotlib.pyplot as pltimport numpy as npnp.random.seed(1) ...原创 2018-01-25 21:17:29 · 1125 阅读 · 0 评论 -
Keras GRU 文字识别
GRU(Gated Recurrent Unit)是LSTM的一个变体,也能克服RNN无法很好处理远距离依赖的问题。GRU的结构跟LSTM类似,不过增加了让三个门层也接收细胞状态的输入,是常用的LSTM变体之一。LSTM核心模块:这一核心模块在GRU中变为: CTC网络结构定义:def get_model(height,nclass): input = Input(shap...原创 2018-02-10 19:18:38 · 7634 阅读 · 4 评论 -
keras channels_last、preprocess_input、全连接层Dense、SGD优化器、模型及编译
channels_last 和 channels_firstkeras中 channels_last 和 channels_first 用来设定数据的维度顺序(image_data_format)。对2D数据来说,"channels_last"假定维度顺序为 (rows,cols,channels), 而"channels_first"假定维度顺序为(channels, rows, cols)。对...原创 2018-03-14 20:34:52 · 15712 阅读 · 0 评论 -
keras中VGG19预训练模型的使用
keras提供了VGG19在ImageNet上的预训练权重模型文件,其他可用的模型还有VGG16、Xception、ResNet50、InceptionV3 4个。 VGG19在keras中的定义:def VGG19(include_top=True, weights='imagenet', input_tensor=None, input_shape=None,...原创 2018-07-24 09:42:34 · 31036 阅读 · 19 评论 -
keras图像风格迁移
风格迁移: 在内容上尽量与基准图像保持一致,在风格上尽量与风格图像保持一致。1. 使用预训练的VGG19网络提取特征 2. 损失函数之一是“内容损失”(content loss),代表合成的图像的特征与基准图像的特征之间的L2距离,保证生成的图像内容和基准图像保持一致。 3. 损失函数之二是“风格损失”(style loss),代表合成图像的特征与风格图像的特征之间的Gram矩阵之间的差...原创 2018-07-29 12:37:43 · 4540 阅读 · 1 评论 -
keras模型可视化
1. 安装pydotpip install pydot 2. 安装 graphvizsudo apt-get install graphviz 3. 使用keras中 plot_model 函数画出模型图#encoding=utf-8from keras.models import Sequentialfrom keras.layers.core i...原创 2018-08-09 10:58:25 · 8407 阅读 · 0 评论 -
卷积神经网络特征图可视化(自定义网络和VGG网络)
借助Keras和Opencv实现的神经网络中间层特征图的可视化功能,方便我们研究CNN这个黑盒子里到发生了什么。 自定义网络特征可视化 代码:# coding: utf-8from keras.models import Modelimport cv2import matplotlib.pyplot as pltfrom keras.models import...原创 2018-07-27 23:22:38 · 75259 阅读 · 74 评论 -
在python程序中使用YOLO v3(基于keras)
在python程序中使用YOLO,可以为YOLO添加python接口,也可以把YOLO的网络框架和权重文件转换成keras或pytorch使用的格式,然后再在python程序中调用。这里介绍基于keras的YOLO调用。 完整项目代码下载地址 : https://github.com/dcrmg/yolo3-training-keras-master 1. 生成keras的.h5文...原创 2018-08-03 09:22:11 · 31186 阅读 · 18 评论 -
生成对抗网络消除图像模糊(Keras)
2017年,乌克兰天主教大学、布拉格捷克理工大学和解决方案提供商Eleks联手公布了一篇论文,文章标题为《DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks》。这篇文章中,研究人员提出一种基于条件对抗式生成网络和内容损失(content loss)的端对端学习法DeblurGAN,用来去除图像上因为相...原创 2018-09-29 09:51:18 · 9466 阅读 · 6 评论