演化计算(蚁群算法、粒子群算法、遗传算法、演化规则......)
1.概念
演化计算主要用于解决预测优化问题。由于演化计算利用一组解求解,所以这一组解越分散,含信息量越多,而优化的过程就是这一组解聚合的过程。
演化计算的重要特征是聚散(或称多样性)。通过多次聚散(聚合——交换信息;离散——扩散和继续搜索),尽快得出最优解。通常利用这个特性研究自适应算法。
演化计算中的适应度函数的作用是对算法进行评估,决定何时结束算法。
2.传统算法和演化计算
传统算法(如梯度下降法、爬山法)
- 根据导数的性质决定迭代的方向,一次只有一个解。
- 一般是线性模型,且要求函数可导、连续等,要求较高。
- 确定性。给定一个初始解,总会沿着同一个过程得出同一个解。
演化计算
- 一组解在一起协同作用产生一个最优解。
- 不需要具体的函数,只要能够确定适应度函数,就可以通过适应度函数,对算法进行评估。
- 从概率角度。使用随机函数随机搜索,每次运行结果可能不一样。
概率是演化计算中很重要的一个概念。没有概率演化计算中的很多算法是无法寻优的。
随机函数的选择是演化计算中不同算法的主要区别,如选择高斯分布、柯西分布等