机器学习
文章平均质量分 89
Dear_林
知其然知其所以然
展开
-
梯度下降(Gradient Descent)小结
文章转载于:https://www.cnblogs.com/pinard/p/5970503.html主页:https://www.cnblogs.com/pinard/在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。这里就对梯度下降法做一个完整的总结。1、梯度在微积分里,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得转载 2022-03-03 23:57:58 · 301 阅读 · 0 评论 -
softmax+交叉熵
1、softmax函数softmax函数的定义为:softmax函数的特点:● 函数值在[0,1]之间;● 所有的softmax(xi)相加的总和是1面对一个分类问题,能将输出的yi转换成[0,1]的概率,选择最大的概率yi作为分类的结果。sigmoid函数定义为:sigmoid函数将每个yi映射到[0,1]之间,但每个yi之间是相互独立的,∑yi与1没有关系,可以用作二分类;而softmax函数的本质是将一个k维数据[a1,a2,a3,…,ak]映射成另外一个K维向量[b1,b2,b3原创 2022-02-23 23:31:17 · 2841 阅读 · 0 评论