1、softmax函数
softmax函数的定义为:
softmax函数的特点:
● 函数值在[0,1]之间;
● 所有的softmax(xi)相加的总和是1
面对一个分类问题,能将输出的yi转换成[0,1]的概率,选择最大的概率yi作为分类的结果。
sigmoid函数定义为:
sigmoid函数将每个yi映射到[0,1]之间,但每个yi之间是相互独立的,∑yi与1没有关系,可以用作二分类;而softmax函数的本质是将一个k维数据[a1,a2,a3,…,ak]映射成另外一个K维向量[b1,b2,b3,…,bk],每个值之间是相互存在关系的,∑ai=∑bi=1,可以用于多分类问题,选取权重最大的一维。
区分sigmoid和softmax使用的场景:
1、有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4