信号与系统笔记

1.1 信号

信号是时间函数/时间序列,函数/序列的图像称为信号的波形。

i. 连续信号和离散信号

连续信号的定义域是连续的,波形上看是不间断的曲线,自变量用 t t t表示,称为函数

离散信号的定义域是间断的,波形上看是一个个离散的点,自变量用 k k k表示,称为序列

注意:连续信号和离散信号是按照定义域连续或离散来判断的,跟信号的值域是否连续无关

ii. 周期信号和非周期信号

周期信号是指信号每隔一定时间 T / N T/N T/N,按相同规律重复变化的信号,$T/N $称为信号的周期。

连续周期信号: f ( t ) = f ( t + m T ) f(t) = f(t + mT) f(t)=f(t+mT) 离散周期信号: f ( k ) = f ( k + m N ) f(k) = f(k + mN) f(k)=f(k+mN)

只要给出周期信号某一个周期内的波形,就能画出周期信号整个定义域上的波形

对于正/余弦函数 s i n ( ω t ) sin(ωt) sin(ωt)而言,周期肯定为 2 π ω \frac{2π}{ω} ω2π,不管周期求出来是整数还是小数还是无理数

但是对于正/余弦序列 s i n ( ω k ) sin(ωk) sin(ωk)来说,利用 2 π ω \frac{2π}{ω} ω2π求出来的周期值出现整数/小数/无理数需要分开考虑。

  • 如果 2 π ω \frac{2π}{ω} ω2π为整数,那么正弦序列的周期就为 2 π ω \frac{2π}{ω} ω2π,例如 s i n ( π k ) sin(πk) sin(πk)的周期就为 2 2 2

  • 如果 2 π ω \frac{2π}{ω} ω2π为小数,那么将 2 π ω \frac{2π}{ω} ω2π得到分式上下化简让分子分母没有公因子,周期就为分子,例如 s i n ( 6 π k 7 ) sin(\frac{6πk}{7}) sin(76πk),利用 2 π ω \frac{2π}{ω} ω2π求出来的分式为 14 6 \frac{14}{6} 614,化简后为 7 3 \frac{7}{3} 37,那么这个序列信号的周期就为 7 7 7

  • 如果 2 π ω \frac{2π}{ω} ω2π为无理数,则序列信号没有周期,例如 s i n ( k ) sin(k) sin(k),利用 2 π ω \frac{2π}{ω} ω2π求出来的值为 2 π 2π 2π,为无理数,则该序列没有周期

iii. 实信号和复信号

实信号的值域肯定都是实数,而复信号的值域可以出现复数。

最常用的复信号是复指数信号,例如 e j t e^{jt} ejt 3 j t 3^{jt} 3jt,但是不管底数是什么,都能化成 e e e

  • 连续复指数信号: f ( t ) = e s t , s = σ + j ω f(t) = e^{st}, s = σ+jω f(t)=ests=σ+

    利用欧拉公式 e j x = c o s ( x ) + j s i n ( x ) e^{jx} = cos(x) + jsin(x) ejx=cos(x)+jsin(x),可以把连续复指数信号展开:
    e s t = e ( σ + j ω ) t = e σ t + j ω t = e σ t e j ω t 而: e j ω t = c o s ( ω t ) + j s i n ( ω t ) 则: e s t = e σ t c o s ( ω t ) + j e σ t s i n ( ω t ) e^{st} = e^{(σ+jω)t} = e^{σt+jωt} = e^{σt}e^{jωt}\\ 而:e^{jωt} = cos(ωt) + jsin(ωt)\\ 则:e^{st}=e^{σt}cos(ωt)+je^{σt}sin(ωt) est=e(σ+)t=eσt+t=eσtet而:et=cos(ωt)+jsin(ωt)则:est=eσtcos(ωt)+jeσtsin(ωt)
    所以一个连续复指数信号可以拆成两个实(Real)、虚(Image)两个部分:
    R e ( f ( t ) ) = e σ t c o s ( ω t ) I m ( f ( t ) ) = e σ t s i n ( ω t ) Re(f(t)) = e^{σt}cos(ωt) \\ Im(f(t)) = e^{σt}sin(ωt) Re(f(t))=eσtcos(ωt)Im(f(t))=eσtsin(ωt)
    可以看到Real、Image两个部分都是实正弦信号,且振幅都为 e σ t e^{σt} eσt,频率都为 ω ω ω

    • σ > 0 σ>0 σ>0时, e σ t e^{σt} eσt随着 t t t的增大而增大, R e Re Re I m Im Im的波形的峰值也随着 t t t的增大而增大,称为增幅振荡
    • σ < 0 σ<0 σ<0时, e σ t e^{σt} eσt随着 t t t的增大而减小, R e Re Re I m Im Im的波形的峰值也随着 t t t的增大而减小,称为衰减振荡
    • σ = 0 σ=0 σ=0时, e σ t = 1 e^{σt} = 1 eσt=1 R e ( f ( t ) ) = c o s ( ω t ) Re(f(t)) = cos(ωt) Re(f(t))=cos(ωt) I m ( f ( t ) ) = s i n ( ω t ) Im(f(t)) = sin(ωt) Im(f(t))=sin(ωt),波形峰值一直为1,称为等幅振荡

    ω = 0 ω = 0 ω=0时, s = σ s = σ s=σ,复指数信号的 I m Im Im就没有了,复指数信号变成实指数信号 e σ t e^{σt} eσt。而且可以看到复指数信号的一个重要的特性就是它对时间的导数和积分仍然还是复指数信号。

  • 离散复指数信号: f ( k ) = e s k f(k) = e^{sk} f(k)=esk s = α + j β s = α+jβ s=α+jβ

    离散复指数信号和连续复指数信号的分析相似。

1.2 信号的基本运算

信号之间的加和乘、平移和反转、伸缩变换。

信号 f ( ⋅ ) f(\cdot) f()表示既可以是 f ( t ) f(t) f(t),也可以是 f ( k ) f(k) f(k)

i. 加法和乘法

信号 f 1 ( ⋅ ) f_1(\cdot) f1()和信号 f 2 ( ⋅ ) f_2(\cdot) f2()的加法 f 1 ( ⋅ ) + f 2 ( ⋅ ) f_1(\cdot)+f_2(\cdot) f1()+f2()指的是两个瞬时信号值相加,乘法 f 1 ( ⋅ ) f 2 ( ⋅ ) f_1(\cdot)f_2(\cdot) f1()f2()指的是两个瞬时信号值相乘

例如:
f 1 ( k ) = { 2 k , k < 0 k + 1 , k > 0 f 2 ( k ) = { 0 , k < − 2 2 − k , k ≥ − 2 f_1(k) = \left\{\begin{matrix} 2^k, & k<0 \\ k+1, & k>0 \end{matrix}\right. \\ f_2(k) = \left\{\begin{matrix} 0, & k<-2 \\ 2^{-k}, & k\ge-2 \end{matrix}\right. f1(k)={2k,k+1,k<0k>0f2(k)={0,2k,k<2k2
则:
f 1 ( k ) + f 2 ( k ) = { 2 k , k < − 2 2 k + 2 − k , k = − 2 , − 1 k + 1 + 2 − k , k ≥ 0 f 1 ( k ) f 2 ( k ) = { 0 , k < − 2 1 , k = − 2 , − 1 ( k + 1 ) 2 − k , k ≥ 0 f_1(k)+f_2(k)=\left\{\begin{matrix} 2^k, & k<-2 \\ 2^k + 2^{-k}, & k = -2, -1 \\ k+1+2^{-k}, & k\ge0 \end{matrix}\right. \\ f_1(k)f_2(k)=\left\{\begin{matrix} 0, & k<-2 \\ 1, & k=-2,-1 \\ (k+1)2^{-k}, & k\ge0 \end{matrix}\right. f1(k)+f2(k)= 2k,2k+2k,k+1+2k,k<2k=2,1k0f1(k)f2(k)= 0,1,(k+1)2k,k<2k=2,1k0

ii. 反转和平移

信号反转是将 t t t变成 − t -t t,波形上看是将x轴正方向变成向左,然后把向左的x轴带着原先的波形反转一下,让x轴正方向再变成向右,相当于将波形顺着y轴转半圈。

信号平移是在 t t t ± \pm ±一个常数,满足左加右减,也就是 t + c t+c t+c就是将波形向左移动 c c c t − c t-c tc就是将波形向右移动 c c c

iii. 伸缩变换

信号的伸缩变换一般应用在连续信号上,离散信号一般不作伸缩变换(因为会导致丢失某些信号信息)。

信号伸缩变换是将 t t t变成 a t at at,其中 a > 0 a>0 a>0,原先的 t t t的值会变成 t a \frac{t}{a} at的值即 f 现 ( t ) = f 原 ( t a ) f_现(t) = f_原(\frac{t}{a}) f(t)=f(at),比如原先 f ( 2 ) = 2 f(2) = 2 f(2)=2 f ( 4 ) = 4 f(4) = 4 f(4)=4,如果现在令 a = 2 a = 2 a=2,那么伸缩变换后 f ( 2 / 2 ) = f ( 1 ) = 2 f(2/2) = f(1) = 2 f(2/2)=f(1)=2 f ( 4 / 2 ) = f ( 2 ) = 4 f(4/2) = f(2) = 4 f(4/2)=f(2)=4,相当于将原信号的波形压缩。所以 a > 1 a>1 a>1代表信号压缩, 0 < a < 1 0<a<1 0<a<1代表信号伸展。

信号 f ( a t + b ) f(at + b) f(at+b)可以通过对信号 f ( t ) f(t) f(t)进行反转、平移、伸缩变换得到。

比如 f ( − 2 t + 4 ) f(-2t+4) f(2t+4),就可以先将 f ( t ) f(t) f(t)向左平移4得到 f ( t + 4 ) f(t+4) f(t+4),然后将 f ( t + 4 ) f(t+4) f(t+4)压缩得到 f ( 2 t + 4 ) f(2t+4) f(2t+4),最后将 f ( 2 t + 4 ) f(2t+4) f(2t+4)反转得到 f ( − 2 t + 4 ) f(-2t+4) f(2t+4)

注意:不论是反转、平移、伸缩变换都是在原先那个 t t t上进行的,反转是 t → − t t\rightarrow-t tt,伸缩变换是 t → a t t\rightarrow at tat,平移是 t → t ± c t\rightarrow t\pm c tt±c,所以要注意如果先反转/伸缩变换使得 t t t前面的值不为1,那么平移之后化简出来的值会有变换,例如 f ( − t + 4 ) f(-t+4) f(t+4)可以先向左平移4再反转,也可以是先反转再向右平移4即 f ( t ) → f ( − t ) → f ( − ( t − 4 ) ) → f ( − t + 4 ) f(t) \rightarrow f(-t) \rightarrow f(-(t-4)) \rightarrow f(-t+4) f(t)f(t)f((t4))f(t+4)

1.3 阶跃和冲激
i. 阶跃函数和冲激函数

首先,我们来导出单位阶跃函数:

我们来看一个函数:
γ n ( t ) = { 0 , t < − 1 n 1 2 + n 2 t , − 1 n < t < 1 n ( n = 2 , 3 , ⋯   ) 1 , t > 1 n \gamma_{n}(t)=\left\{\begin{array}{cl} 0, & t<-\frac{1}{n} \\ \frac{1}{2}+\frac{n}{2} t, & -\frac{1}{n}<t<\frac{1}{n} \quad(n=2,3, \cdots) \\ 1, & t>\frac{1}{n} \end{array}\right. γn(t)= 0,21+2nt,1,t<n1n1<t<n1(n=2,3,)t>n1
这个函数的图形如下所示:

在这里插入图片描述

这是一个在区间 ( − 1 n , 1 n ) (-\frac{1}{n},\frac{1}{n}) (n1n1)上单调递增且斜率为 n 2 \frac{n}{2} 2n的一个函数。

当n逐渐增大的时候,找个函数单调递增的区间 ( − 1 n , 1 n ) (-\frac{1}{n},\frac{1}{n}) (n1n1)的区间长度逐渐减小,但是区间斜率 n 2 \frac{n}{2} 2n却不断增大。从图形上看就是实线向虚线转变的过程,当 n → ∞ n\rightarrow∞ n的时候,虚线不断靠近y轴,最后和y轴重合。这说明 γ n ( t ) γ_n(t) γn(t)在t=0的时候直接从0跃迁到1,区间长度为0,区间斜率为无穷大。

这就得到了我们的单位阶跃函数 ε ( t ) ε(t) ε(t)
ε ( t ) → d e f lim ⁡ n → ∞ γ n ( t ) = { 0 , t < 0 1 , t > 0 \varepsilon (t) \overset{def}{\rightarrow} \lim_{n \to \infty} \gamma_{n}(t)=\left\{\begin{matrix} 0 , & t < 0\\ 1,&t>0 \end{matrix}\right. ε(t)defnlimγn(t)={0,1,t<0t>0
单位阶跃函数的图形如下:

在这里插入图片描述

接着,我们来导出单位冲激函数:

将上面第一个函数 γ n ( t ) γ_{n}(t) γn(t)求导,得到 p n ( t ) = γ n ′ ( t ) p_{n}(t)= {\gamma_{n}}'(t) pn(t)=γn(t)
p n ( t ) = { 0 , t < − 1 n n 2 , − 1 n < t < 1 n 0 , t > 1 n p_{n}(t) =\left\{\begin{array}{cl} 0, & t < - \frac{1}{n} \\ \frac{n}{2}, & -\frac{1}{n}<t<\frac{1}{n} \\ 0, & t > \frac{1}{n} \end{array}\right. pn(t)= 0,2n,0,t<n1n1<t<n1t>n1
p n ( t ) p_{n}(t) pn(t)的函数图像如下:

在这里插入图片描述

p n ( t ) p_{n}(t) pn(t)是一个幅度为 n 2 \frac{n}{2} 2n,宽度为 2 n \frac{2}{n} n2的矩形脉冲。这个矩形脉冲的面积为1,称为函数 p n ( t ) p_{n}(t) pn(t)的强度。

当n不断增大时,矩形脉冲的宽度会不断缩小,但是矩形脉冲的高却在不断增大。从上面这个图形上看就是本来扁平的实线矩形逐渐变成狭长的虚线矩形。当 n → ∞ n\rightarrow∞ n时,函数 p n ( t p_{n}(t pn(t)的宽度趋于零,而高度趋于无穷大,最终 p n ( t ) p_{n}(t) pn(t)与y轴重合。

注意:矩形脉冲收缩的时候强度一直保持1不变。

这就得到了我们的单位冲激函数 δ ( t ) δ(t) δ(t)
δ ( t ) → d e f lim ⁡ n → ∞ p n ( t ) \delta (t) \overset{def}{\rightarrow} \lim_{n \to \infty} p_{n}(t) δ(t)defnlimpn(t)
单位冲激函数的图形如下:

在这里插入图片描述

单位冲激函数的定义可以写成:
{ δ ( t ) = 0 , t ≠ 0 ∫ − ∞ ∞ δ ( t ) d t = 1 \left\{\begin{matrix} \delta(t) = 0, t\ne0 \\ \int_{-∞}^{∞}\delta(t)dt=1 \end{matrix}\right. {δ(t)=0,t=0δ(t)dt=1

δ ( t ) = 0 , t ≠ 0 \delta(t) = 0, t\ne0 δ(t)=0,t=0的含义是单位冲激函数在 t ≠ 0 t\ne0 t=0处始终为0, ∫ − ∞ ∞ δ ( t ) d t = 1 \int_{-∞}^{∞}\delta(t)dt=1 δ(t)dt=1的含义是冲激函数波形下的面积为1,也就是强度为1。

单位冲激函数 δ ( t ) \delta(t) δ(t)可以进行平移,例如 δ ( t − t 0 ) \delta(t-t_0) δ(tt0)表示在 t = t 0 t=t_0 t=t0处有一个强度为1的冲激函数。

冲激函数的强度也可以改变,比如 a δ ( t − t 0 ) a\delta(t-t_0) aδ(tt0)就表示在 t = t 0 t=t_0 t=t0处有一个强度为a的冲激函数。

接下来,我们来导出冲激偶:

首先我们来看一个三角形脉冲 f Δ ( t ) f_{\Delta}(t) fΔ(t),其底宽为 2 τ 2\tau 2τ,高为 1 τ \frac{1}{\tau} τ1,波形下的面积为1,波形如下:

在这里插入图片描述

它可以看作是将单位冲激函数掰开两个腿,一个腿向左迈,一个腿向右迈,从而形成一个三角形脉冲。当 τ → 0 \tau\rightarrow0 τ0时,这个三角形脉冲就变成了单位冲激函数。

现在我们将这个三角形脉冲 f Δ ( t ) f_{\Delta}(t) fΔ(t)求导得到 f Δ ′ ( t ) {f_{\Delta}}'(t) fΔ(t),波形如下:

在这里插入图片描述

f Δ ′ ( t ) {f_{\Delta}}'(t) fΔ(t)的波形是据原点对称的两个矩形脉冲,矩形脉冲的面积为 1 τ \frac{1}{\tau} τ1,当 τ → 0 \tau\rightarrow0 τ0时,两个矩形脉冲逐渐向y轴收缩,面积不断增大,最终和y轴重合,面积变为无穷大。而这也就得到了一个向上的强度为无穷大的冲激和一个向下的强度为无穷大的冲激,也就是冲激偶。

冲激偶的波形如下:

在这里插入图片描述

我们可以知道,冲激偶就是对单位冲激函数求导得到的,且上下两个冲激的强度相同,从而和抵消了,也就是冲激偶的强度为0:
∫ − ∞ ∞ δ ′ ( t ) d t = 0 \int_{-∞}^{∞}{\delta}'(t)dt = 0 δ(t)dt=0
现在我们得到了单位阶跃函数 ε ( t ) \varepsilon(t) ε(t)、单位冲激函数 δ ( t ) \delta(t) δ(t)、冲激偶 δ ′ ( t ) \delta'(t) δ(t),可以知道这三者的关系为:
ε ( t ) = ∫ − ∞ t δ ( x ) d x δ ( t ) = ∫ − ∞ t δ ′ ( x ) d x   \varepsilon(t) = \int_{-∞}^{t}\delta(x)dx \\ \delta(t)= \int_{-∞}^{t}\delta'(x)dx \ ε(t)=tδ(x)dxδ(t)=tδ(x)dx 

δ ( t ) = d ε ( t ) d t δ ′ ( t ) = d δ ( t ) d t \delta(t)=\frac{d\varepsilon(t)}{dt} \\ \delta'(t)=\frac{d\delta(t)}{dt} δ(t)=dtdε(t)δ(t)=dtdδ(t)

矩形脉冲 g τ ( t ) g_{\tau}(t) gτ(t)称为门函数,门宽为 τ \tau τ,门高为1,也就是:
g τ ( t ) = { 1 , ∣ t ∣ < τ 2 0 , ∣ t ∣ > τ 2 g_{\tau}(t) = \left\{\begin{matrix} 1, & |t| < \frac{\tau}{2} \\ 0, & |t| > \frac{\tau}{2} \end{matrix}\right. gτ(t)={1,0,t<2τt>2τ
门函数的波形如下:

在这里插入图片描述

用阶跃函数可以表示出门函数:
g τ ( t ) = ε ( t + π 2 ) − ε ( t − π 2 ) g_{\tau}(t) = \varepsilon(t+\frac{\pi}{2})-\varepsilon(t-\frac{\pi}{2}) gτ(t)=ε(t+2π)ε(t2π)

ii. 冲激函数的广义函数定义

首先,我们需要一类检验函数 φ ( t ) \varphi(t) φ(t)

那么广义函数 g ( t ) g(t) g(t)和检验函数 φ ( t ) \varphi(t) φ(t)的关系就可以写成:
∫ − ∞ ∞ g ( t ) φ ( t ) d t = N \int_{-∞}^{∞}g(t)\varphi(t)dt=N g(t)φ(t)dt=N
举个例子:

我们拿单位冲激函数 δ ( t ) \delta(t) δ(t)来说,由于 δ ( t ) \delta(t) δ(t) t ≠ 0 t\ne0 t=0的地方都为0,只在 t = 0 t=0 t=0的地方不为0,那么:
∫ − ∞ ∞ δ ( t ) φ ( t ) d t = φ ( 0 ) \int_{-∞}^{∞}\delta(t)\varphi(t)dt= \varphi(0) δ(t)φ(t)dt=φ(0)
也就说明 δ ( t ) \delta(t) δ(t) φ ( t ) \varphi(t) φ(t)的关系是 N = φ ( 0 ) N = \varphi(0) N=φ(0)

如果我们能找到另外一个函数 f ( t ) f(t) f(t),这个函数跟检验函数 φ ( t ) \varphi(t) φ(t)的关系也满足 N = φ ( 0 ) N = \varphi(0) N=φ(0),那么我们就能利用 f ( t ) f(t) f(t)来定义 δ ( t ) \delta(t) δ(t)

比如我们在上面讨论过的 lim ⁡ n → ∞ p n ( t ) \lim_{n \to \infty} p_{n}(t) limnpn(t),可以知道 lim ⁡ n → ∞ ∫ − ∞ ∞ p n ( t ) φ ( t ) d t = φ ( 0 ) \lim_{n \to \infty}\int_{-∞}^{∞} p_{n}(t)\varphi(t)dt= \varphi(0) limnpn(t)φ(t)dt=φ(0),那么我们就能利用 lim ⁡ n → ∞ p n ( t ) \lim_{n \to \infty} p_{n}(t) limnpn(t)来定义 δ ( t ) \delta(t) δ(t)

所以根据上面的讨论我们可以知道:

现在有两个广义函数 f ( t ) f(t) f(t) g ( t ) g(t) g(t),一类检验函数 φ ( t ) \varphi(t) φ(t),如果两个广义函数跟检验函数的关系相同,那么我们就认为两个广义函数相等。
∫ − ∞ ∞ f ( t ) φ ( t ) d t = N ∫ − ∞ ∞ g ( t ) φ ( t ) d t = N 则: f ( t ) = g ( t ) \int_{-∞}^{∞}f(t)\varphi(t)dt= N \\ \int_{-∞}^{∞}g(t)\varphi(t)dt= N \\ \text{则:}\\f(t) = g(t) f(t)φ(t)dt=Ng(t)φ(t)dt=N则:f(t)=g(t)

iii. 冲激函数的导数和积分
  • 冲激函数 δ ( t ) \delta(t) δ(t)的导数:

    首先我们来考虑冲激函数的一阶导数 δ ′ ( t ) \delta'(t) δ(t),根据分部积分以及检验函数的急降性质我们可以知道:
    ∫ − ∞ ∞ δ ′ ( t ) φ ( t ) d t = δ ( t ) φ ( t ) ∣ − ∞ ∞ − ∫ − ∞ ∞ δ ( t ) φ ′ ( t ) d t = − ∫ − ∞ ∞ δ ( t ) φ ′ ( t ) d t \int_{-∞}^{∞}\delta'(t)\varphi(t)dt = \delta(t)\varphi(t)|_{-∞}^{∞}-\int_{-∞}^{∞}\delta(t)\varphi'(t)dt =-\int_{-∞}^{∞}\delta(t)\varphi'(t)dt δ(t)φ(t)dt=δ(t)φ(t)δ(t)φ(t)dt=δ(t)φ(t)dt
    由于冲激函数 δ ( t ) \delta(t) δ(t)与检验函数的关系 N = φ ( 0 ) N = \varphi(0) N=φ(0),则:
    ∫ − ∞ ∞ δ ′ ( t ) φ ( t ) d t = − ∫ − ∞ ∞ δ ( t ) φ ′ ( t ) d t = − φ ′ ( 0 ) \int_{-∞}^{∞}\delta'(t)\varphi(t)dt = -\int_{-∞}^{∞}\delta(t)\varphi'(t)dt = - \varphi'(0) δ(t)φ(t)dt=δ(t)φ(t)dt=φ(0)
    根据上面对冲激函数一阶导数的分析,我们可以推广到对冲激函数n阶导数 δ ( n ) ( t ) \delta^{(n)}(t) δ(n)(t),从而得到:
    ∫ − ∞ ∞ δ ( n ) ( t ) φ ( t ) d t = ( − 1 ) n ∫ − ∞ ∞ δ ( t ) φ ( n ) ( t ) d t = ( − 1 ) n φ ( n ) ( 0 ) \int_{-∞}^{∞}\delta^{(n)}(t)\varphi(t)dt = (-1)^n\int_{-∞}^{∞}\delta(t)\varphi^{(n)}(t)dt = (-1)^n\varphi^{(n)}(0) δ(n)(t)φ(t)dt=(1)nδ(t)φ(n)(t)dt=(1)nφ(n)(0)

  • 广义函数的积分:

    单位阶跃函数 ε ( t ) \varepsilon(t) ε(t)的积分称为斜升函数 r ( t ) r(t) r(t)
    r ( t ) = ∫ − ∞ t ε ( x ) d x = { 0 , t < 0 t , t > 0 = t ε ( t ) r(t) = \int_{-∞}^{t}\varepsilon(x)dx=\left\{\begin{matrix} 0, & t < 0\\ t, & t > 0 \end{matrix}\right.=t\varepsilon(t) r(t)=tε(x)dx={0,t,t<0t>0=(t)
    类似地:
    ε ( t ) = ∫ − ∞ t δ ( x ) d x δ ( t ) = ∫ − ∞ t δ ′ ( x ) d x   \varepsilon(t) = \int_{-∞}^{t}\delta(x)dx \\ \delta(t)= \int_{-∞}^{t}\delta'(x)dx \ ε(t)=tδ(x)dxδ(t)=tδ(x)dx 
    t → ∞ t\rightarrow∞ t时:
    ∫ − ∞ ∞ δ ( x ) d x = 1 ∫ − ∞ ∞ δ ′ ( x ) d x = 0 \int_{-∞}^{∞}\delta(x)dx = 1 \\ \int_{-∞}^{∞}\delta'(x)dx = 0 δ(x)dx=1δ(x)dx=0

iv. 冲激函数的性质

- 与普通函数的乘积

现在有一个普通函数 f ( t ) f(t) f(t),现在分析它与冲激函数的乘积 f ( t ) δ ( t ) f(t)\delta(t) f(t)δ(t)

首先,我们将 f ( t ) δ ( t ) f(t)\delta(t) f(t)δ(t)看作广义函数,那么这个广义函数和检验函数 φ ( t ) \varphi(t) φ(t)的关系N满足:
∫ − ∞ ∞ f ( t ) δ ( t ) φ ( t ) d t = ∫ − ∞ ∞ δ ( x ) [ f ( t ) φ ( t ) ] d t = f ( 0 ) φ ( 0 ) = N \int_{-∞}^{∞}f(t)\delta(t)\varphi(t)dt = \int_{-∞}^{∞}\delta(x)[f(t)\varphi(t)]dt =f(0)\varphi(0) = N f(t)δ(t)φ(t)dt=δ(x)[f(t)φ(t)]dt=f(0)φ(0)=N
现在我们还能找到另外一个广义函数 f ( 0 ) δ ( t ) f(0)\delta(t) f(0)δ(t)跟检验函数的关系N满足 N = f ( 0 ) φ ( 0 ) N = f(0)\varphi(0) N=f(0)φ(0)
∫ − ∞ ∞ f ( 0 ) δ ( t ) φ ( t ) d t = f ( 0 ) ∫ − ∞ ∞ δ ( t ) φ ( t ) d t = f ( 0 ) φ ( 0 ) = N \int_{-∞}^{∞}f(0)\delta(t)\varphi(t)dt = f(0)\int_{-∞}^{∞}\delta(t)\varphi(t)dt = f(0)\varphi(0) = N f(0)δ(t)φ(t)dt=f(0)δ(t)φ(t)dt=f(0)φ(0)=N
那么,根据广义函数相等原则我们可以知道:
f ( t ) δ ( t ) = f ( 0 ) δ ( t ) f(t)\delta(t) = f(0)\delta(t) f(t)δ(t)=f(0)δ(t)
也就是说普通函数与冲激函数的乘积等于普通函数在 t = 0 t=0 t=0处的函数值与冲激函数的乘积。

接下来,我们来分析冲激偶与普通函数的乘积 f ( t ) δ ′ ( t ) f(t)\delta'(t) f(t)δ(t)
∫ − ∞ ∞ f ( t ) δ ′ ( t ) φ ( t ) d t = ∫ − ∞ ∞ δ ′ ( t ) [ f ( t ) φ ( t ) ] d t = − [ f ( t ) φ ( t ) ] ′ ∣ t = 0 = − f ′ ( 0 ) φ ( 0 ) − f ( 0 ) φ ′ ( 0 ) = N \int_{-∞}^{∞}f(t)\delta'(t)\varphi(t)dt = \int_{-∞}^{∞}\delta'(t)[f(t)\varphi(t)]dt = -[f(t)\varphi(t)]'|_{t=0} =-f'(0)\varphi(0)-f(0)\varphi'(0) = N f(t)δ(t)φ(t)dt=δ(t)[f(t)φ(t)]dt=[f(t)φ(t)]t=0=f(0)φ(0)f(0)φ(0)=N
现在我们还能找到另外一个广义函数 f ( 0 ) δ ′ ( t ) − f ′ ( 0 ) δ ( t ) f(0)\delta'(t)-f'(0)\delta(t) f(0)δ(t)f(0)δ(t)跟检验函数的关系N满足 N = − f ′ ( 0 ) φ ( 0 ) − f ( 0 ) φ ′ ( 0 ) N = -f'(0)\varphi(0)-f(0)\varphi'(0) N=f(0)φ(0)f(0)φ(0)
∫ − ∞ ∞ [ f ( 0 ) δ ′ ( t ) − f ′ ( 0 ) δ ( t ) ] φ ( t ) d t = − f ′ ( 0 ) φ ( 0 ) − f ( 0 ) φ ′ ( 0 ) = N \int_{-∞}^{∞} [f(0)\delta'(t)-f'(0)\delta(t)]\varphi(t)dt=-f'(0)\varphi(0)-f(0)\varphi'(0) = N [f(0)δ(t)f(0)δ(t)]φ(t)dt=f(0)φ(0)f(0)φ(0)=N
那么,根据广义函数相等原则我们可以知道:
f ( t ) δ ′ ( t ) = f ( 0 ) δ ′ ( t ) − f ′ ( 0 ) δ ( t ) f(t)\delta'(t) = f(0)\delta'(t)-f'(0)\delta(t) f(t)δ(t)=f(0)δ(t)f(0)δ(t)

总结一下,冲激函数以及冲激偶和普通函数的乘积满足以下关系:
f ( t ) δ ( t ) = f ( 0 ) δ ( t ) f ( t ) δ ′ ( t ) = f ( 0 ) δ ′ ( t ) − f ′ ( 0 ) δ ( t ) f(t)\delta(t) = f(0)\delta(t) \\ f(t)\delta'(t) = f(0)\delta'(t)-f'(0)\delta(t) f(t)δ(t)=f(0)δ(t)f(t)δ(t)=f(0)δ(t)f(0)δ(t)

∫ − ∞ ∞ f ( t ) δ ( t ) d t = ∫ − ∞ ∞ f ( 0 ) δ ( t ) d t = f ( 0 ) ∫ − ∞ ∞ f ( t ) δ ′ ( t ) d t = ∫ − ∞ ∞ f ( 0 ) δ ′ ( t ) − f ′ ( 0 ) δ ( t ) d t = − f ′ ( 0 ) \int_{-\infty}^{\infty}f(t)\delta(t)dt = \int_{-\infty}^{\infty}f(0)\delta(t)dt = f(0) \\ \int_{-\infty}^{\infty}f(t)\delta'(t)dt = \int_{-\infty}^{\infty} f(0)\delta'(t)-f'(0)\delta(t)dt = -f'(0) f(t)δ(t)dt=f(0)δ(t)dt=f(0)f(t)δ(t)dt=f(0)δ(t)f(0)δ(t)dt=f(0)

- 移位

现在我们来看看在 t = t 0 t=t_0 t=t0处的冲激函数 δ ( t − t 0 ) \delta(t-t_0) δ(tt0)

δ ( t − t 0 ) \delta(t-t_0) δ(tt0)与检验函数 φ ( t ) \varphi(t) φ(t)的关系 N N N为:
∫ − ∞ ∞ δ ( t − t 0 ) φ ( t ) d t = ∫ − ∞ ∞ δ ( x ) φ ( x + t 0 ) d x = φ ( t 0 ) = N \int_{-\infty}^{\infty} \delta(t-t_0) \varphi(t)dt = \int_{-\infty}^{\infty}\delta(x)\varphi(x+t_0)dx = \varphi(t_0) = N δ(tt0)φ(t)dt=δ(x)φ(x+t0)dx=φ(t0)=N
δ ′ ( t − t 0 ) \delta'(t-t_0) δ(tt0)与检验函数 φ ( t ) \varphi(t) φ(t)的关系 N N N为:
∫ − ∞ ∞ δ ′ ( t − t 0 ) φ ( t ) d t = ∫ − ∞ ∞ δ ′ ( x ) φ ( x + t 0 ) d x = − φ ′ ( t 0 ) = N \int_{-\infty}^{\infty} \delta'(t-t_0) \varphi(t)dt = \int_{-\infty}^{\infty}\delta'(x)\varphi(x+t_0)dx = -\varphi'(t_0) = N δ(tt0)φ(t)dt=δ(x)φ(x+t0)dx=φ(t0)=N
δ ( t − t 0 ) \delta(t-t_0) δ(tt0)与普通函数的乘积为:
f ( t ) δ ( t − t 0 ) = f ( t 0 ) δ ( t − t 0 ) ∫ − ∞ ∞ f ( t ) δ ( t − t 0 ) d t = ∫ − ∞ ∞ f ( t 0 ) δ ( t − t 0 ) d t = f ( t 0 ) f(t)\delta(t-t_0) = f(t_0)\delta(t-t_0) \\ \int_{-\infty}^{\infty}f(t)\delta(t-t_0)dt = \int_{-\infty}^{\infty}f(t_0)\delta(t-t_0)dt = f(t_0) f(t)δ(tt0)=f(t0)δ(tt0)f(t)δ(tt0)dt=f(t0)δ(tt0)dt=f(t0)
δ ′ ( t − t 0 ) \delta'(t-t_0) δ(tt0)与普通函数的乘积为:
f ( t ) δ ′ ( t − t 0 ) = f ( t 0 ) δ ′ ( t − t 0 ) − f ′ ( t 0 ) δ ( t − t 0 ) ∫ − ∞ ∞ f ( t ) δ ′ ( t − t 0 ) d t = ∫ − ∞ ∞ f ( t 0 ) δ ′ ( t − t 0 ) − f ′ ( t 0 ) δ ( t − t 0 ) d t = − f ′ ( t 0 ) f(t)\delta'(t-t_0) = f(t_0)\delta'(t-t_0) - f'(t_0)\delta(t-t_0) \\ \int_{-\infty}^{\infty}f(t)\delta'(t-t_0)dt = \int_{-\infty}^{\infty}f(t_0)\delta'(t-t_0) - f'(t_0)\delta(t-t_0)dt = -f'(t_0) f(t)δ(tt0)=f(t0)δ(tt0)f(t0)δ(tt0)f(t)δ(tt0)dt=f(t0)δ(tt0)f(t0)δ(tt0)dt=f(t0)

一个信号的函数表达式可以转换为用移位阶跃函数来表示,例如:

现在有一个信号 f ( t ) f(t) f(t),波形如下:

在这里插入图片描述

我们可以写出这个信号的函数表达式:
f ( t ) = { 0 , t < − 1 2 t + 2 , − 1 < t < 1 − 2 , 1 < t < 3 0 , t > 3 f(t) = \left\{\begin{matrix} 0, & t < -1 \\ 2t+2, & -1 < t < 1 \\ -2, & 1 < t < 3 \\ 0, & t > 3 \end{matrix}\right. f(t)= 0,2t+2,2,0,t<11<t<11<t<3t>3
利用移位阶跃函数我们可以将函数表达式转换成下面这个形式:
f ( t ) = ( 2 t + 2 ) [ ε ( t + 1 ) − ε ( t − 1 ) ] − 2 [ ε ( t − 1 ) − ε ( t − 3 ) ] f(t) = (2t+2)[\varepsilon(t+1)-\varepsilon(t-1)]-2[\varepsilon(t-1)-\varepsilon(t-3)] f(t)=(2t+2)[ε(t+1)ε(t1)]2[ε(t1)ε(t3)]
现在我们对 f ( t ) f(t) f(t)求导得到 f ′ ( t ) f'(t) f(t)
f ′ ( t ) = 2 [ ε ( t + 1 ) − ε ( t − 1 ) ] + ( 2 t + 2 ) [ δ ( t + 1 ) − δ ( t − 1 ) ] − 2 [ δ ( t − 1 ) − δ ( t − 3 ) ] 根据冲激函数的性质我们可以得到: f ′ ( t ) = 2 [ ε ( t + 1 ) − ε ( t − 1 ) ] − 4 δ ( t − 1 ) − 2 δ ( t − 1 ) + 2 δ ( t − 3 ) = 2 [ ε ( t + 1 ) − ε ( t − 1 ) ] − 6 δ ( t − 1 ) + 2 δ ( t − 3 ) f'(t)=2[\varepsilon(t+1)-\varepsilon(t-1)]+(2t+2)[\delta(t+1)-\delta(t-1)]-2[\delta(t-1)-\delta(t-3)] \\ 根据冲激函数的性质我们可以得到: \\ f'(t)=2[\varepsilon(t+1)-\varepsilon(t-1)]-4\delta(t-1)-2\delta(t-1)+2\delta(t-3) \\=2[\varepsilon(t+1)-\varepsilon(t-1)]-6\delta(t-1)+2\delta(t-3) f(t)=2[ε(t+1)ε(t1)]+(2t+2)[δ(t+1)δ(t1)]2[δ(t1)δ(t3)]根据冲激函数的性质我们可以得到:f(t)=2[ε(t+1)ε(t1)]4δ(t1)2δ(t1)+2δ(t3)=2[ε(t+1)ε(t1)]6δ(t1)+2δ(t3)
画出 f ′ ( t ) f'(t) f(t)的波形如下:

在这里插入图片描述

根据上面这个例子我们可以知道:

  1. 信号的表达式可以通过移位阶跃函数来表示

  2. 对信号求导时,如果碰到第一类间断点,那么信号的一阶导数就会产生冲激,向上突跳就产生向上的冲激,向下突跳就产生向下的冲激,且冲激的强度等于突跳的幅度。如 f ( t ) f(t) f(t) t = 1 t=1 t=1时,函数值突然从 4 4 4降到 − 2 -2 2,于是 f ′ ( t ) f'(t) f(t)就会产生一个向下的冲激,而且冲激的强度正好等于突降的幅度 6 6 6

- 尺度变换

上面讨论的 a δ ( t ) a\delta(t) aδ(t)代表一个强度为 a a a的冲激函数,现在研究一下 δ ( a t ) \delta(at) δ(at)
δ ( a t ) = 1 ∣ a ∣ ⋅ δ ( t ) δ ′ ( a t ) = 1 ∣ a ∣ ⋅ 1 a ⋅ δ ′ ( t ) δ ( n ) ( a t ) = 1 ∣ a ∣ ⋅ 1 a n ⋅ δ ( n ) ( t ) \delta(at) = \frac{1}{|a|}\cdot\delta(t) \\ \delta'(at) = \frac{1}{|a|}\cdot\frac{1}{a}\cdot\delta'(t) \\ \delta^{(n)}(at) = \frac{1}{|a|}\cdot\frac{1}{a^n}\cdot\delta^{(n)}(t) δ(at)=a1δ(t)δ(at)=a1a1δ(t)δ(n)(at)=a1an1δ(n)(t)

- 奇偶性

根据上面尺度变化得到的公式 δ ( n ) ( a t ) = 1 ∣ a ∣ ⋅ 1 a n ⋅ δ ( n ) ( t ) \delta^{(n)}(at) = \frac{1}{|a|}\cdot\frac{1}{a^n}\cdot\delta^{(n)}(t) δ(n)(at)=a1an1δ(n)(t),如果让 a = − 1 a=-1 a=1,那么可以得到:
δ ( n ) ( − t ) = ( − 1 ) n ⋅ δ ( n ) ( t ) \delta^{(n)}(-t) = (-1)^n\cdot\delta^{(n)}(t) δ(n)(t)=(1)nδ(n)(t)

  • n n n为偶数时, δ ( n ) ( − t ) = δ ( n ) ( t ) \delta^{(n)}(-t) = \delta^{(n)}(t) δ(n)(t)=δ(n)(t),为偶函数。
  • n n n为奇数时, δ ( n ) ( − t ) = − δ ( n ) ( t ) \delta^{(n)}(-t) = -\delta^{(n)}(t) δ(n)(t)=δ(n)(t),为奇函数。

- 复合函数形式的冲激函数

形如 δ [ f ( t ) ] \delta[f(t)] δ[f(t)]的信号称为复合函数形式的冲激函数。

要化简这样的信号,要按照以下步骤:

  1. f ( t ) = 0 f(t)=0 f(t)=0的解。如果求出来的解有重根,那 δ [ f ( t ) ] \delta[f(t)] δ[f(t)]就没有意义。

  2. 求出 f ′ ( t ) f'(t) f(t),然后将 f ( t ) = 0 f(t)=0 f(t)=0求出来的 n n n个单根 t = t i t=t_i t=ti代入得到 f ′ ( t i ) f'(t_i) f(ti)

  3. 完成1和2后, δ [ f ( t ) ] \delta[f(t)] δ[f(t)]可以写成下面这样的形式:
    δ [ f ( t ) ] = ∑ i = 1 n 1 ∣ f ′ ( t i ) ∣ δ ( t − t i ) \delta[f(t)] = \sum_{i=1}^{n}\frac{1}{|f'(t_i)|}\delta(t-t_i) δ[f(t)]=i=1nf(ti)1δ(tti)

举个例子,化简 δ ( 4 t 2 − 1 ) \delta(4t^2-1) δ(4t21)

  1. 首先求 4 t 2 − 1 = 0 4t^2-1=0 4t21=0的解。解得 t 1 = − 1 2 t_1=-\frac{1}{2} t1=21 t 2 = 1 2 t_2=\frac{1}{2} t2=21。发现无重根,解为两个单根。
  2. 求得 f ′ ( t ) = 8 t f'(t)=8t f(t)=8t,将 t 1 , t 2 t_1,t_2 t1,t2代入得到 f ′ ( t 1 ) = − 4 , f ′ ( t 2 ) = 4 f'(t_1)=-4,f'(t_2)=4 f(t1)=4,f(t2)=4
  3. 所以 δ ( 4 t 2 − 1 ) \delta(4t^2-1) δ(4t21)就可以写成: δ ( 4 t 2 − 1 ) = 1 4 δ ( t + 1 2 ) + 1 4 δ ( t − 1 2 ) \delta(4t^2-1)=\frac{1}{4}\delta(t+\frac{1}{2})+\frac{1}{4}\delta(t-\frac{1}{2}) δ(4t21)=41δ(t+21)+41δ(t21)
1.4 系统
i. 系统的数学模型

连续系统用微分方程描述。

离散系统用差分方程描述。

举两个例子:

  1. 设某种口服药物在肠胃中的含量为 y 1 ( t ) y_1(t) y1(t),在血液中的含量为 y 2 ( t ) y_2(t) y2(t),常数 k 1 k1 k1是药物从肠胃进入血液的比例,常数 k 2 k2 k2是血液中的药物消耗的比例。现在某个人服药 f ( t ) f(t) f(t),那么血液中药物含量 y 2 ( t ) y_2(t) y2(t)和服药量 f ( t ) f(t) f(t)满足什么关系?

    首先这个系统是人体,口服的药物进入肠胃,肠胃的药物会进入血液,血液中的药物会消耗,那么我们可以知道系统的输入是服药量 f ( t ) f(t) f(t),系统的输出是血液中的药物含量 y 2 ( t ) y_2(t) y2(t),那么:

    肠胃内的药物增加量是 y 1 ′ ( t ) y_1'(t) y1(t),肠胃药物增加量是口服药物的含量减去肠胃进入血液的药物含量:
    y 1 ′ ( t ) = f ( t ) − k 1 y 1 ( t ) y_1'(t) = f(t) - k_1y_1(t) y1(t)=f(t)k1y1(t)
    血液内的药物增加量是 y 2 ′ ( t ) y_2'(t) y2(t),血液药物增加量是肠胃进入血液的药物含量减去血液内消耗的药物含量:
    y 2 ′ ( t ) = k 1 y 1 ( t ) − k 2 y 2 ( t ) y_2'(t) = k_1y_1(t) - k_2y_2(t) y2(t)=k1y1(t)k2y2(t)
    那么我们将上面两个式子结合将 y 1 ( t ) y_1(t) y1(t) y 1 ′ ( t ) y_1'(t) y1(t)消去:
    k 1 y 1 ( t ) = y 2 ′ ( t ) + k 2 y 2 ( t ) y 1 ′ ( t ) = f ( t ) − y 2 ′ ( t ) − k 2 y 2 ( t ) y 2 ′ ′ ( t ) = k 1 y 1 ′ ( t ) − k 2 y 2 ( t ) = k 1 f ( t ) − k 1 y 2 ′ ( t ) − k 1 k 2 y 2 ( t ) − k 2 y 2 ′ ( t ) k_1y_1(t) = y_2'(t) + k_2y_2(t) \\ y_1'(t) = f(t) - y_2'(t) - k_2y_2(t) \\ y_2''(t) = k_1y_1'(t) - k_2y_2(t) = k_1f(t) - k_1y_2'(t) - k_1k_2y_2(t) - k_2y_2'(t) k1y1(t)=y2(t)+k2y2(t)y1(t)=f(t)y2(t)k2y2(t)y2′′(t)=k1y1(t)k2y2(t)=k1f(t)k1y2(t)k1k2y2(t)k2y2(t)
    于是我们可以得到输入(激励)和输出(响应)的一个二阶微分方程:
    y 2 ′ ′ ( t ) + ( k 1 + k 2 ) y 2 ′ ( t ) + k 1 k 2 y 2 ( t ) = k 1 f ( t ) y_2''(t) + (k_1+k_2)y_2'(t) + k_1k_2y_2(t) = k_1f(t) y2′′(t)+(k1+k2)y2(t)+k1k2y2(t)=k1f(t)

  2. 设某个地区第 k k k年的人口为 y ( k ) y(k) y(k),这个地区每年的人口出生率为 a a a,人口死亡率为 b b b,第 k k k年迁入这个地区的人口为 f ( k ) f(k) f(k),那么这个地区第 k k k年的人口总数为多少?

    首先这个系统是地区,系统的输入是 f ( k ) f(k) f(k),系统的输出是 y ( k ) y(k) y(k),第 k k k年的人口由第 k − 1 k-1 k1年人口以及第 k − 1 k-1 k1年人口的出生、死亡以及第 k k k年的人口迁入有关:
    y ( k ) = y ( k − 1 ) + a y ( k − 1 ) − b y ( k − 1 ) + f ( k ) y(k) = y(k-1) + ay(k-1) - by(k-1) + f(k) y(k)=y(k1)+ay(k1)by(k1)+f(k)
    于是我们可以得到一个差分方程:
    y ( k ) − ( 1 + a − b ) y ( k − 1 ) = f ( k ) y(k) - (1+a-b)y(k-1) = f(k) y(k)(1+ab)y(k1)=f(k)

ii. 系统的框图表示

系统除了可以用数学方程表示,还可以用框图表示,常用的框图元件如下:

- 积分器(连续系统)

在这里插入图片描述

积分器左边输入一个 f ( x ) f(x) f(x),右边输出 y ( t ) = ∫ − ∞ t f ( x ) d x y(t)=\int_{-\infty}^{t}f(x)dx y(t)=tf(x)dx

- 迟延单元(离散系统)

在这里插入图片描述

迟延单元左边输入一个 f ( k ) f(k) f(k),右边输出 y ( k ) = f ( k − 1 ) y(k)=f(k-1) y(k)=f(k1) ,如果输入 f ( k − 1 ) f(k-1) f(k1)那就输出 f ( k − 2 ) f(k-2) f(k2)

- 加法器

在这里插入图片描述

加法器可以左边有多个输入 f 1 ( ⋅ ) , f 2 ( ⋅ ) , … , f n ( ⋅ ) f_1(\cdot),f_2(\cdot),\dots, f_n(\cdot) f1(),f2(),,fn(),右边输出 y ( ⋅ ) = f 1 ( ⋅ ) + f 2 ( ⋅ ) + ⋯ + f n ( ⋅ ) y(\cdot)=f_1(\cdot)+f_2(\cdot)+\dots+f_n(\cdot) y()=f1()+f2()++fn()

- 数乘器

在这里插入图片描述

数乘器可以有两种表示方式,常用的是下面那种,也就是直接在箭头上方标上一个常数 a a a,代表将输入的 f ( ⋅ ) f(\cdot) f()乘上这个常数得到输出 y ( ⋅ ) = a f ( ⋅ ) y(\cdot)=af(\cdot) y()=af()

- 延时器(连续系统)

在这里插入图片描述

延时器用于连续系统,如果延时为 T T T,那么左边输入 f ( t ) f(t) f(t),右边输出 y ( t ) = f ( t − T ) y(t)=f(t-T) y(t)=f(tT)

常常会给出框图让我们写出框图表示的系统的方程式,举两个例子:

  1. 某个连续系统的框图如下所示,写出这个连续系统的方程:

    在这里插入图片描述

    首先我们可以看到这个框图有两个积分器,积分器左边是右边的导数,那就设第二个积分器的右边为 x ( t ) x(t) x(t),那么第二个积分器的左边/第一个积分器的右边就为 x ′ ( t ) x'(t) x(t),第一个积分器的左边就为 x ′ ′ ( t ) x''(t) x′′(t)

    然后我们发现有两个加法器。

    • 第一个加法器的输入为 f ( t ) 、 − a 0 x ( t ) 、 − a 1 x ′ ( t ) f(t)、-a_0x(t)、-a_1x'(t) f(t)a0x(t)a1x(t),第一个加法器的输出为 x ′ ′ ( t ) = f ( t ) − a 0 x ( t ) − a 1 x ′ ( t ) x''(t)=f(t)-a_0x(t)-a_1x'(t) x′′(t)=f(t)a0x(t)a1x(t)

    • 第二个加法器的输入为 b 0 x ( t ) 、 b 1 x ′ ( t ) 、 b 2 x ′ ′ ( t ) b_0x(t)、b_1x'(t)、b_2x''(t) b0x(t)b1x(t)b2x′′(t),第二个加法器的输出为 y ( t ) = b 0 x ( t ) + b 1 x ′ ( t ) + b 2 x ′ ′ ( t ) y(t)=b_0x(t)+b_1x'(t)+b_2x''(t) y(t)=b0x(t)+b1x(t)+b2x′′(t)

    现在我们将上面两个式子合并从而消去中间变量 x ( t ) 、 x ′ ( t ) 、 x ′ ′ ( t ) x(t)、x'(t)、x''(t) x(t)x(t)x′′(t),从而得到系统最终的方程:
    y ′ ′ ( t ) + a 1 y ′ ( t ) + a 0 y ( t ) = b 2 f ′ ′ ( t ) + b 1 f ′ ( t ) + b 0 f ( t ) y''(t)+a_1y'(t)+a_0y(t)=b_2f''(t)+b_1f'(t)+b_0f(t) y′′(t)+a1y(t)+a0y(t)=b2f′′(t)+b1f(t)+b0f(t)

  2. 某个离散系统的框图如下所示,写出这个离散系统的方程:

在这里插入图片描述

首先我们可以看到这个框图有两个迟延单元,迟延单元右边是左边 − 1 -1 1,那就设第一个迟延单元的左边为 x ( k ) x(k) x(k),那么第一个迟延单元的右边/第二个迟延单元的左边就为 x ( k − 1 ) x(k-1) x(k1),第二个迟延单元的右边就为 x ( k − 2 ) x(k-2) x(k2)

然后我们发现有两个加法器。

  • 第一个加法器的输入为 f ( k ) 、 − a 0 x ( k − 2 ) 、 − a 1 x ( k − 1 ) f(k)、-a_0x(k-2)、-a_1x(k-1) f(k)a0x(k2)a1x(k1),第一个加法器的输出为 x ( k ) = f ( k ) − a 0 x ( k − 2 ) − a 1 x ( k − 1 ) x(k)=f(k)-a_0x(k-2)-a_1x(k-1) x(k)=f(k)a0x(k2)a1x(k1)

  • 第二个加法器的输入为 − b 0 x ( k − 2 ) 、 b 2 x ( k ) -b_0x(k-2)、b_2x(k) b0x(k2)b2x(k),第二个加法器的输出为 y ( k ) = b 2 x ( k ) − b 0 x ( k − 2 ) y(k)=b_2x(k)-b_0x(k-2) y(k)=b2x(k)b0x(k2)

现在我们将上面两个式子合并从而消去中间变量 x ( k ) 、 x ( k − 1 ) 、 x ( k − 2 ) x(k)、x(k-1)、x(k-2) x(k)x(k1)x(k2),从而得到系统最终的方程:
y ( k ) + a 1 y ( k − 1 ) + a 0 y ( k − 2 ) = b 2 f ( k ) − b 0 f ( k − 2 ) y(k)+a_1y(k-1)+a_0y(k-2)=b_2f(k)-b_0f(k-2) y(k)+a1y(k1)+a0y(k2)=b2f(k)b0f(k2)

总结一下:

根据系统的框图写出系统的方程的步骤如下:

  1. 对于多个积分器,选择最右的积分器的右边为 x ( t ) x(t) x(t),从而左边为 x ′ ( t ) x'(t) x(t),以此类推可以写出所有积分器的左右。

  2. 对于多个迟延单元,选择最左的迟延单元的左边为 x ( k ) x(k) x(k),从而右边为 x ( k − 1 ) x(k-1) x(k1),以此类推可以写出所有迟延单元的左右。

  3. 写出所有加法器的输出。

  4. 消去中间变量 x ( ⋅ ) x(\cdot) x()

1.5 系统的特性和分析方法

动态系统指的是系统输出(响应)除了和输出(激励)有关,还跟系统过去的状态有关。

也就是 输出 ( 响应 ) ← { 状态,输入 ( 激励 ) } 输出(响应) \leftarrow \{状态,输入(激励)\} 输出(响应){状态,输入(激励)}

对于连续或者离散的动态系统,其特性有:线性/非线性、时变/时不变、因果/非因果、稳定/不稳定。

下面我们主要研究**线性时不变(LTI)**系统。

i. 线性

首先我们介绍一下线性性质:

线性性质 = 齐次性质 + 可加性质 线性性质 = 齐次性质 + 可加性质 线性性质=齐次性质+可加性质

  • 齐次性质满足:当输入增大 α \alpha α倍时,输出也增大 α \alpha α倍,即 y ( ⋅ ) = T [ α f ( ⋅ ) ] = α T [ f ( ⋅ ) ] y(\cdot)=T[\alpha f(\cdot)]=\alpha T[f(\cdot)] y()=T[αf()]=αT[f()]

  • 可加性质满足:现在有多个输入 f 1 ( ⋅ ) , f 2 ( ⋅ ) , … f_1(\cdot),f_2(\cdot),\dots f1(),f2(),,造成的总输出 y ( ⋅ ) = T [ f 1 ( ⋅ ) + f 2 ( ⋅ ) + …   ] y(\cdot)=T[f_1(\cdot)+f_2(\cdot)+\dots] y()=T[f1()+f2()+],那么总输出还等于单个输入造成的单个输出之和即: y ( ⋅ ) = T [ f 1 ( ⋅ ) ] + T [ f 2 ( ⋅ ) ] + T [ …   ] y(\cdot)=T[f_1(\cdot)]+T[f_2(\cdot)]+T[\dots] y()=T[f1()]+T[f2()]+T[]

线性性质同时满足齐次性质和可加性质

我们已经知道动态系统的 输出 = 状态 + 输入 输出=状态+输入 输出=状态+输入

状态我们记作 { x ( 0 ) } \{x(0)\} {x(0)},输入我们记作 { f ( ⋅ ) } \{f(\cdot)\} {f()}

注意: { x ( 0 ) } \{x(0)\} {x(0)}可以表示多个状态 x 1 ( 0 ) , x 2 ( 0 ) , … x_1(0),x_2(0),\dots x1(0),x2(0),

{ f ( ⋅ ) } \{f(\cdot)\} {f()}可以表示多个输入 f 1 ( ⋅ ) , f 2 ( ⋅ ) , … f_1(\cdot),f_2(\cdot),\dots f1(),f2(),

​ 状态可以看成一种特殊的输入—系统原先的固有的输入。

那么系统的输出 y ( ⋅ ) y(\cdot) y()就满足:
y ( ⋅ ) = T [ { x ( 0 ) } , { f ( ⋅ ) } , ] y(\cdot) = T[\{x(0)\},\{f(\cdot)\},] y()=T[{x(0)},{f()},]

根据上面我们讨论的线性性质,如果一个系统是线性的,那么这个系统的输出满足:
y ( ⋅ ) = T [ { 0 } , { f ( ⋅ ) } ] + T [ { x ( 0 ) } , { 0 } ] y(\cdot) = T[\{0\},\{f(\cdot)\}] + T[\{x(0)\},\{0\}] y()=T[{0},{f()}]+T[{x(0)},{0}]
其中:

  • 如果 { x ( 0 ) } = { 0 } \{x(0)\}=\{0\} {x(0)}={0},也就是系统的状态为 0 0 0,那么就称系统的响应(输出)为零(zero)状态(state)响应,记作:
    y z s ( ⋅ ) = T [ { 0 } , { f ( ⋅ ) } ] y_{zs}(\cdot) = T[\{0\},\{f(\cdot)\}] yzs()=T[{0},{f()}]

  • 如果 { f ( ⋅ ) } = { 0 } \{f(\cdot)\}=\{0\} {f()}={0},也就是系统的输入为 0 0 0,那么就称系统的响应(输出)为零(zero)输入(input)响应,记作:
    y z i ( ) ˙ = T [ { x ( 0 ) } , { 0 } ] y_{zi}(\dot) = T[\{x(0)\},\{0\}] yzi()˙=T[{x(0)},{0}]

所以,线性系统的响应等于零状态响应和零输入响应之和,即:
y ( ⋅ ) = y z s ( ⋅ ) + y z i ( ⋅ ) y(\cdot) = y_{zs}(\cdot) + y_{zi}(\cdot) y()=yzs()+yzi()
线性系统响应可分解为零状态响应和零输入响应,这个性质称为线性系统的分解特性

线性系统除了拥有分解特性之外,还满足零输入线性零状态线性

  • 零输入线性:当系统输入为 0 0 0时,如果系统有多个状态,那么系统的响应对于所有状态满足线性性质
  • 零状态线性:当系统状态为 0 0 0时,如果系统有多个输入,那么系统的响应对于所有输入满足线性性质

总结一下:

线性系统有三个特性:

  1. 分解特性: y ( ⋅ ) = y z s ( ⋅ ) + y z i ( ⋅ ) y(\cdot) = y_{zs}(\cdot) + y_{zi}(\cdot) y()=yzs()+yzi()
  2. 零输入线性: y z i ( ⋅ ) = 线性 [ S t a t e s ] y_{zi}(\cdot)=线性[States] yzi()=线性[States]
  3. 零状态线性: y z s ( ⋅ ) = 线性 [ I n p u t s ] y_{zs}(\cdot)=线性[Inputs] yzs()=线性[Inputs]

相反的,要判断一个系统是否为线性系统,只要看看这个系统是否满足上面这三条特性即可,都满足的系统就为线性系统,否则为非线性系统。

ii. 时不变性

现在给了你一个系统的方程,如果方程中所有变量前的系数都为常数,那么这个系统就是时不变的,否则就是时变的。

连续时不变系统的方程是常系数微分方程。

离散时不变系统的方程是常系数差分方程。

比如: y ′ ′ ( t ) + y ′ ( t ) = f ( t ) y''(t)+y'(t)=f(t) y′′(t)+y(t)=f(t)就是连续时不变系统

y ′ ′ ( t ) + t y ′ ( t ) = f ( t ) y''(t)+ty'(t)=f(t) y′′(t)+ty(t)=f(t)就是连续时变系统

线性时不变系统满足以下性质:

  1. 时不变性(连续/离散系统都有):给你一个线性时不变系统,现在我们求出这个系统的零状态响应 y z s ( ⋅ ) y_{zs}(\cdot) yzs(),现在我们将系统的输入延迟一段时间 t d / k d t_d/k_d td/kd,系统的零状态响应 y z s ( ⋅ ) y_{zs}(\cdot) yzs()也延迟 t d / k d t_d/k_d td/kd。也就是:
    y z s ( t − t d ) = T [ { 0 } , { f ( t − t d ) } ] y z s ( k − k d ) = T [ { 0 } , { f ( k − k d ) } ] y_{zs}(t-t_d) = T[\{0\},\{f(t-t_d)\}] \\ y_{zs}(k-k_d) = T[\{0\},\{f(k-k_d)\}] yzs(ttd)=T[{0},{f(ttd)}]yzs(kkd)=T[{0},{f(kkd)}]
    这个性质就称为时不变性,或者可以叫作移位不变性。波形变化如下:

在这里插入图片描述

  1. 可微分性(连续系统):给你一个线性时不变系统,现在我们求出这个系统的零状态响应 y z s ( ⋅ ) y_{zs}(\cdot) yzs(),如果我们将系统的输入求导,那么系统的零状态响应 y z s ( ⋅ ) y_{zs}(\cdot) yzs()也求导。也就是:
    d y z s ( t ) d t = T [ { 0 } , d { f ( t ) } d t ] \frac{dy_{zs}(t)}{dt} = T[\{0\},\frac{d\{f(t)\}}{dt}] dtdyzs(t)=T[{0},dtd{f(t)}]

  2. 可积分性(连续系统):给你一个线性时不变系统,现在我们求出这个系统的零状态响应 y z s ( ⋅ ) y_{zs}(\cdot) yzs(),如果我们将系统的输入积分,那么系统的零状态响应 y z s ( ⋅ ) y_{zs}(\cdot) yzs()也积分。也就是:
    ∫ − ∞ t y z s ( x ) d x = T [ { 0 } , ∫ − ∞ t { f ( x ) } d x ] \int_{-\infty}^{t}y_{zs}(x)dx = T[\{0\},\int_{-\infty}^{t}\{f(x)\}dx] tyzs(x)dx=T[{0},t{f(x)}dx]

现在我们通过具体的例子来判断一个系统是否为线性时不变系统:

y ( t ) = a x ( 0 ) + b ∫ 0 t f ( τ ) d τ , t ≥ 0 y(t)=ax(0)+b\int_{0}^{t}f(\tau)d\tau,t\ge0 y(t)=ax(0)+b0tf(τ)dτ,t0

判断上面个系统是否为线性的、时不变的。

  • 首先判断这个系统是否为线性的。

    上面我们已经讨论过了,一个系统如果是线性的必需满足分解特性、零输入线性、零状态线性三个特性。

    这个系统的零状态响应和零输入响应为:
    y z s ( t ) = b ∫ 0 t f ( τ ) d τ , t ≥ 0 y z i ( t ) = a x ( 0 ) y_{zs}(t) = b\int_{0}^{t}f(\tau)d\tau,t\ge 0 \\ y_{zi}(t) = ax(0) yzs(t)=b0tf(τ)dτ,t0yzi(t)=ax(0)

    很显然 y ( t ) = y z s ( t ) + y z i ( t ) y(t)=y_{zs}(t)+y_{zi}(t) y(t)=yzs(t)+yzi(t),该系统满足分解特性。

    零输入响应 y z i ( t ) = a x ( 0 ) y_{zi}(t) = ax(0) yzi(t)=ax(0),该系统满足零输入线性。

    对于零状态响应 y z s ( t ) = b ∫ 0 t f ( τ ) d τ , t ≥ 0 y_{zs}(t) = b\int_{0}^{t}f(\tau)d\tau,t\ge 0 yzs(t)=b0tf(τ)dτ,t0,设 f ( τ ) = α f 1 ( τ ) + β f 2 ( τ ) f(\tau)=\alpha f_1(\tau)+\beta f_2(\tau) f(τ)=αf1(τ)+βf2(τ),代入得:
    y z s ( t ) = T [ { 0 } , f ( τ ) ] = T [ { 0 } , α f 1 ( τ ) + β f 2 ( τ ) ] = b ∫ 0 t f ( τ ) d τ = b ∫ 0 t α f 1 ( τ ) + β f 2 ( τ ) d τ = b α ∫ 0 t f 1 ( τ ) d τ + b β ∫ 0 t f 2 ( τ ) d τ = α T [ { 0 } , f 1 ( τ ) ] + β T [ { 0 } , f 2 ( τ ) ] y_{zs}(t) = T[\{0\},f(\tau)] = T[\{0\},\alpha f_1(\tau)+\beta f_2(\tau)] = b\int_{0}^{t}f(\tau)d\tau = b\int_{0}^{t}\alpha f_1(\tau)+\beta f_2(\tau) d\tau \\ =b\alpha\int_{0}^{t}f_1(\tau)d\tau + b\beta\int_{0}^{t}f_2(\tau)d\tau = \alpha T[\{0\},f_1(\tau)]+\beta T[\{0\},f_2(\tau)] yzs(t)=T[{0},f(τ)]=T[{0},αf1(τ)+βf2(τ)]=b0tf(τ)dτ=b0tαf1(τ)+βf2(τ)dτ=bα0tf1(τ)dτ+bβ0tf2(τ)dτ=αT[{0},f1(τ)]+βT[{0},f2(τ)]
    该系统也满足零状态线性。

    则这个系统是线性的。

    接着我们判断这个系统是否为时不变的。

    要判断一个系统是否为时不变,只用看看这个系统是否满足时不变性。

    对于零状态响应 y z s ( t ) = b ∫ 0 t f ( τ ) d τ , t ≥ 0 y_{zs}(t) = b\int_{0}^{t}f(\tau)d\tau,t\ge 0 yzs(t)=b0tf(τ)dτ,t0,我们设 f d ( τ ) = f ( τ − t d ) f_d(\tau)=f(\tau-t_d) fd(τ)=f(τtd),代入得:
    y z s d ( t ) = b ∫ 0 t f ( τ − t d ) d τ , t ≥ t d 换元得: y z s d ( t ) = b ∫ − t d t − t d f ( x ) d x = b ∫ 0 t − t d f ( x ) d x = y z s ( t − t d ) y_{zsd}(t) = b\int_{0}^{t}f(\tau-t_d)d\tau,t\ge t_d \\ 换元得: \\ y_{zsd}(t) = b\int_{-t_d}^{t-t_d} f(x)dx = b\int_{0}^{t-t_d}f(x)dx = y_{zs}(t-t_d) yzsd(t)=b0tf(τtd)dτ,ttd换元得:yzsd(t)=btdttdf(x)dx=b0ttdf(x)dx=yzs(ttd)
    满足时不变性,所以这个系统是时不变的。

总结一下:

判断一个系统是否为线性按照以下步骤:

  1. 求出系统的零状态响应和零输入响应。
  2. 判断系统的全响应是否等于零状态响应和零输入响应之和,即验证系统的分解特性。
  3. 判断系统的零状态响应是否满足线性性质,即验证系统的零状态线性。
  4. 判断系统的零输入响应是否满足线性性质,即验证系统的零输入线性。

判断一个系统是否满足时不变性:

  1. 求出系统的零状态响应 y z s ( t ) y_{zs}(t) yzs(t),将 t t t减去一个 t d t_d td,然后代入系统的零状态响应得到 y z s d ( t ) y_{zsd}(t) yzsd(t)
  2. y z s d ( t ) y_{zsd}(t) yzsd(t)化简,看看能不能得到 y z s ( t − t d ) y_{zs}(t-t_d) yzs(ttd),如果 y z s d ( t ) = y z s ( t − t d ) y_{zsd}(t)=y_{zs}(t-t_d) yzsd(t)=yzs(ttd),则系统时不变。
iii. 因果性

现在我们有一个系统,我们在 t 0 / k 0 t_0/k_0 t0/k0这个时间节点接入了激励 f ( ⋅ ) f(\cdot) f()。从这个时间节点开始往前也就是 t < t 0 / k < k 0 t<t_0/k<k_0 t<t0/k<k0,系统都没有收到激励,那么系统的零状态响应 y z s ( ⋅ ) y_{zs}(\cdot) yzs()肯定为 0 0 0,即:
如果: f ( ⋅ ) = 0 , t < t 0 / k < k 0 那么: y z s ( t ) = 0 , t < t 0 / k < k 0 如果: \\ f(\cdot) = 0,t<t_0/k<k_0 \\ 那么: \\ y_{zs}(t) = 0,t<t_0/k<k_0 如果:f()=0,t<t0/k<k0那么:yzs(t)=0,t<t0/k<k0
上面这个性质叫作因果性,满足这个性质的系统称为因果系统,否则称为非因果系统。

这样也许不够直观,那我们来举个例子:

现在有一个系统的零状态响应 y z s ( t ) = f ( t + 1 ) y_{zs}(t)=f(t+1) yzs(t)=f(t+1),在 t = t 0 t=t_0 t=t0这个时刻接入了激励,那么当 t < t 0 t<t_0 t<t0时, f ( t ) = 0 f(t)=0 f(t)=0

那么什么时候 y z s ( t ) = 0 y_{zs}(t)=0 yzs(t)=0呢?

由于 y z s ( t ) = f ( t + 1 ) y_{zs}(t)=f(t+1) yzs(t)=f(t+1),当 t < t 0 − 1 t<t_0-1 t<t01时, f ( t + 1 ) = 0 f(t+1)=0 f(t+1)=0,所以当 t < t 0 − 1 t<t_0-1 t<t01 y z s ( t ) = 0 y_{zs}(t)=0 yzs(t)=0

现在我们知道了当 t < t 0 t<t_0 t<t0时, f ( t ) = 0 f(t)=0 f(t)=0,当 t < t 0 − 1 t<t_0-1 t<t01 y z s ( t ) = 0 y_{zs}(t)=0 yzs(t)=0

那我们来思考一下 t 0 − 1 < t < t 0 t_0-1<t<t_0 t01<t<t0这个时间段,在这个时间段 f ( t ) = 0 f(t)=0 f(t)=0,但是 y z s ( t ) ≠ 0 y_{zs}(t)\ne 0 yzs(t)=0,这说明系统的响应出现在接入激励之前了,说明这个系统是非因果系统。

总结一下:

判断一个系统是否为因果系统可以按照以下步骤:

  1. 看看接入激励的时刻 t 0 t_0 t0,当 t < t 0 t<t_0 t<t0时, f ( t ) = 0 f(t)=0 f(t)=0
  2. 求出 y z s ( t ) = 0 y_{zs}(t)=0 yzs(t)=0的时间段,如果 y z s ( t ) = 0 y_{zs}(t)=0 yzs(t)=0的时间段早于接入激励的时刻,则这个系统为非因果系统,否则为因果系统。
iv. 稳定性

如果系统的输入有界,那么系统的零状态响应也有界,则称这个系统为稳定系统。

比如: y z s ( t ) = f ( t ) y_{zs}(t)=f(t) yzs(t)=f(t),如果 f ( t ) f(t) f(t)有界,那么 y z s ( t ) y_{zs}(t) yzs(t)显然有界,稳定。

y z s ( t ) = ∫ 0 t ε ( x ) d x = t y_{zs}(t)=\int_{0}^{t} \varepsilon(x)dx=t yzs(t)=0tε(x)dx=t,显然 ε ( x ) \varepsilon(x) ε(x)有界,但 y z s ( t ) = t y_{zs}(t)=t yzs(t)=t随着时间增大不断增大,无界,不稳定。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

En1y

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值