哈夫曼树的构建和求哈夫曼编码

#include "string.h"
#include "conio.h"
#include "malloc.h"
#include <stdio.h>
#define N 10     /*待编码字符的个数,即树中叶结点的最大个数*/
#define M 2*N-1  /*树中总的结点数目*/
typedef struct{
  unsigned int weight;
  unsigned int parent,lchild,rchild;
}HTNode,*HuffmanTree;  /*树中结点的结构*/

typedef char **HuffmanCode;
int w[]={5,29,7,8,14,23,3,11};
char data[]={'a','b','c','d','e','f','g','h'};

void Select(HTNode ht[],int k,int *s1,int *s2){
/*ht[1…k]中选择parent为,并且weight最小的两个结点
其序号由指针变量s1,s2指向*/
  int i;
  for (i=1;i<=k && ht[i].parent!=0 ;i++);
  *s1=i;
  for (i=1;i<=k;i++)
    if (ht[i].parent==0 && ht[i].weight<ht[*s1].weight) *s1=i;
  for (i=1; i<=k ; i++)
    if (ht[i].parent==0 && i!=*s1) break;
  *s2=i;
  for (i=1;i<=k;i++)
    if ( ht[i].parent==0 && i!=*s1 && ht[i].weight<ht[*s2].weight) *s2=i;
}
void HuffmanCoding(HuffmanTree &ht,HuffmanCode &hc,int n){
/*构造Huffman树ht,并求出n个字符的编码*/
 //先生成n棵二叉树

  int i,j,m,c,f,s1,s2,start;
  m=2*n-1;//总节点数
  ht=(HuffmanTree)malloc((m+1)*sizeof(HTNode));
  for (i=1;i<=m;i++){
   if (i<=n)  ht[i].weight=w[i-1];
   else ht[i].weight=0;
   ht[i].parent=ht[i].lchild=ht[i].rchild=0;
   }
  //哈夫曼算法
for(i=n+1;i<=m;i++){
    Select(ht,i-1,&s1,&s2);
    ht[s1].parent=i;   ht[s2].parent=i;
    ht[i].lchild=s1;   ht[i].rchild=s2;
    ht[i].weight=ht[s1].weight+ht[s2].weight;
  }
  hc=(HuffmanCode)malloc((n+1)*sizeof(char *));
  char *cd=(char *)malloc(n*sizeof(char));
  cd[n-1]='/0';
  for (i=1;i<=n;i++) {
    start=n-1;
    for (c=i,f=ht[i].parent;f;c=f,f=ht[f].parent)
      if (ht[f].lchild==c) cd[--start]='0';
      else cd[--start]='1';
 hc[i]=(char *)malloc((n-start)*sizeof(char));
    strcpy(hc[i],&cd[start]);
}
  free(cd);
}
void main()
{
  HuffmanTree ht;
  HuffmanCode hc;
  int n=8;
  HuffmanCoding(ht,hc,n);
  for(int i=1;i<=n;i++)
   printf("%c:%s/n",data[i-1],hc[i]);
  printf("/n");


}

//算法5.11 根据赫夫曼树赫夫曼编码 #include using namespace std; typedef struct { int weight; int parent,lchild,rchild; }HTNode,*HuffmanTree; typedef char **HuffmanCode; void Select(HuffmanTree HT,int len,int &s1,int &s2) { int i,min1=0x3f3f3f3f,min2=0x3f3f3f3f;//先赋予最大值 for(i=1;i<=len;i++) { if(HT[i].weight<min1&&HT[i].parent==0) { min1=HT[i].weight; s1=i; } } int temp=HT[s1].weight;//将原值存放起来,然后先赋予最大值,防止s1被重复选择 HT[s1].weight=0x3f3f3f3f; for(i=1;i<=len;i++) { if(HT[i].weight<min2&&HT[i].parent==0) { min2=HT[i].weight; s2=i; } } HT[s1].weight=temp;//恢复原来的值 } //用算法5.10构造赫夫曼树 void CreatHuffmanTree(HuffmanTree &HT,int n) { //构造赫夫曼树HT int m,s1,s2,i; if(n<=1) return; m=2*n-1; HT=new HTNode[m+1]; //0号单元未用,所以需要动态分配m+1个单元,HT[m]表示根结点 for(i=1;i<=m;++i) //将1~m号单元中的双亲、左孩子,右孩子的下标都初始化为0 { HT[i].parent=0; HT[i].lchild=0; HT[i].rchild=0; } cout<<"请输入叶子结点的权值:\n"; for(i=1;i>HT[i].weight; /*――――――――――初始化工作结束,下面开始创建赫夫曼树――――――――――*/ for(i=n+1;i<=m;++i) { //通过n-1次的选择、删除、合并来创建赫夫曼树 Select(HT,i-1,s1,s2); //在HT[k](1≤k≤i-1)中选择两个其双亲域为0且权值最小的结点, // 并返回它们在HT中的序号s1和s2 HT[s1].parent=i; HT[s2].parent=i; //得到新结点i,从森林中删除s1,s2,将s1和s2的双亲域由0改为i HT[i].lchild=s1; HT[i].rchild=s2 ; //s1,s2分别作为i的左右孩子 HT[i].weight=HT[s1].weight+HT[s2].weight; //i 的权值为左右孩子权值之和 } //for } // CreatHuffmanTree void CreatHuffmanCode(HuffmanTree HT,HuffmanCode &HC,int n) { //从叶子到根逆向每个字符的赫夫曼编码,存储在编码表HC中 int i,start,c,f; HC=new char*[n+1]; //分配n个字符编码的头指针矢量 char *cd=new char[n]; //分配临时存放编码的动态数组空间 cd[n-1]='\0'; //编码结束符 for(i=1;i<=n;++i) { //逐个字符赫夫曼编码 start=n-1; //start开始时指向最后,即编码结束符位置 c=i; f=HT[i].parent; //f指向结点c的双亲结点 while(f!=0) { //从叶子结点开始向上回溯,直到根结点 --start; //回
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值