Matlab矩阵函数

这篇博客详细介绍了线性代数中矩阵的各种运算,包括计算行列式、矩阵秩、特征值,以及各种矩阵分解方法如LU、QR、SVD等。这些函数和分解在数据分析和数值计算中起到基础性作用,对于理解和应用线性代数至关重要。
摘要由CSDN通过智能技术生成

          线性代数中经常出现计算矩阵的行列式值、求矩阵的秩以及特征值等运算。矩阵的分解是矩阵和数据分析的基础。

基本的矩阵函数

函数名称 功能和定义
cond(A) 求矩阵A的条件数
det(A) 求矩阵A的行列式值
dot(A,B) 求矩阵A和B的点积
eig(A) 求矩阵A的特征值和特征向量
norm(A,1) 求矩阵A的1范数
norm(A)或norm(A,2) 求矩阵A的2范数
norm(A,inf) 求矩阵A的无穷范数
norm(A,'fro') 求矩阵A的F范数
rank(A) 求矩阵A的秩
rcond(A) 求矩阵A的倒条件数
svd(A) 求矩阵A的奇异值分解
trace(A) 求矩阵A的迹
expm(A) 用特征值和特征向量法求矩阵A的指数
logm(A) 求矩阵A的对数
sqrtm(A) 求矩阵A的平方根

注:logm(A)和sqrtm(A)计算矩阵的对数和平方根是指对矩阵A中的每个元素求对数和平方根。

       只有方阵才可以计算行列式的值,即det(A)的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值