线性代数中经常出现计算矩阵的行列式值、求矩阵的秩以及特征值等运算。矩阵的分解是矩阵和数据分析的基础。
基本的矩阵函数
函数名称 | 功能和定义 |
cond(A) | 求矩阵A的条件数 |
det(A) | 求矩阵A的行列式值 |
dot(A,B) | 求矩阵A和B的点积 |
eig(A) | 求矩阵A的特征值和特征向量 |
norm(A,1) | 求矩阵A的1范数 |
norm(A)或norm(A,2) | 求矩阵A的2范数 |
norm(A,inf) | 求矩阵A的无穷范数 |
norm(A,'fro') | 求矩阵A的F范数 |
rank(A) | 求矩阵A的秩 |
rcond(A) | 求矩阵A的倒条件数 |
svd(A) | 求矩阵A的奇异值分解 |
trace(A) | 求矩阵A的迹 |
expm(A) | 用特征值和特征向量法求矩阵A的指数 |
logm(A) | 求矩阵A的对数 |
sqrtm(A) | 求矩阵A的平方根 |
注:logm(A)和sqrtm(A)计算矩阵的对数和平方根是指对矩阵A中的每个元素求对数和平方根。
只有方阵才可以计算行列式的值,即det(A)的