条件数cond函数(matlab)

本文探讨了矩阵条件数的重要性,它衡量了矩阵问题的稳定性。通过Matlab内置函数cond、condest和rcond,我们展示了如何计算不同范数的条件数,并以Hilbert矩阵为例,展示了病态矩阵条件数随阶数增长。通过实例代码演示了如何在编程中应用这些概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

为什么计算矩阵的条件数

矩阵的条件数是判断矩阵“病态”程度的一个指标;用于衡量线性方程组的解对数据误差的敏感性,它反映出矩阵求逆及线性方程组解的精确程度。
若矩阵的条件数越大,则表明矩阵的病态越严重;反而就是呈现出良态。比如hilbter矩阵是一个著名的病态矩阵,随着阶数的增加,其条件数越来越大。

如何调用matlab内置函数

(1)cond函数
求矩阵二范式条件数,即X的最大奇异值与最小奇异值的比值。

(2)condest函数
求矩阵一范式条件数

(3)rcond函数
求矩阵条件数的倒数

>> m = magic(2)

m =

     1     3
     4     2

>> ma = cond(m)

ma =

    2.6180
h = hilb(4)

h =

    1.0000    0.5000    0.3333    0.2500
    0.5000    0.3333    0.2500    0.2000
    0.3333    0.2500    0.2000    0.1667
    0.2500    0.2000    0.1667    0.1429

>> mh = cond(h)

mh =

   1.5514e+04
h = hilb(10)

h =

    1.0000    0.5000    0.3333    0.2500    0.2000    0.1667    0.1429    0.1250    0.1111    0.1000
    0.5000    0.3333    0.2500    0.2000    0.1667    0.1429    0.1250    0.1111    0.1000    0.0909
    0.3333    0.2500    0.2000    0.1667    0.1429    0.1250    0.1111    0.1000    0.0909    0.0833
    0.2500    0.2000    0.1667    0.1429    0.1250    0.1111    0.1000    0.0909    0.0833    0.0769
    0.2000    0.1667    0.1429    0.1250    0.1111    0.1000    0.0909    0.0833    0.0769    0.0714
    0.1667    0.1429    0.1250    0.1111    0.1000    0.0909    0.0833    0.0769    0.0714    0.0667
    0.1429    0.1250    0.1111    0.1000    0.0909    0.0833    0.0769    0.0714    0.0667    0.0625
    0.1250    0.1111    0.1000    0.0909    0.0833    0.0769    0.0714    0.0667    0.0625    0.0588
    0.1111    0.1000    0.0909    0.0833    0.0769    0.0714    0.0667    0.0625    0.0588    0.0556
    0.1000    0.0909    0.0833    0.0769    0.0714    0.0667    0.0625    0.0588    0.0556    0.0526

>> mh = cond(h)

mh =

   1.6025e+13

对于线性方程Ax=b,如果A的条件数大,b的微小改变就能引起解x较大的改变,数值稳定性差。如果A的条件数小,b有微小的改变,x的改变也很微小,数值稳定性好。

条件数计算

% 定义一个矩阵
A = [1, 2, 3;
4, 5, 6;
7, 8, 9];
% 显示结果
disp('矩阵 A 的条件数:');
condition_number1 = cond(A);
disp(condition_number1);
% 计算矩阵 A 的奇异值分解
[U, S, V] = svd(A);
% 计算奇异值的最大值和最小值
max_singular_value = max(diag(S));
min_singular_value = min(diag(S));
% 计算条件数
condition_number = max_singular_value / min_singular_value;
% 显示结果
disp('矩阵 A 的条件数:');
disp(condition_number);

输出为

矩阵 A 的条件数:
   5.0523e+16

矩阵 A 的条件数:
   5.0523e+16
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq-120

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值