[思考记录]严谨、讲因果

        上周清理罗列了一些程序上的问题,后续又进一步对其中的每一项再次进行了推敲整理。通过整理,帮助逐步还原了某些问题的“真面目”,也让思路更为清晰了。

整理过程(第3步还在进行中):
1、追溯原始问题。为什么会存在这个问题(当时为什么要这样做)、背后想要解决的问题是什么?以此追溯,还原到最开始想要去解决的问题。
2、重新探究解决问题的途径。跳出来,重新审视。因为办法通常不止一种,虽然当时的选择会导致现在看到的问题,但并不意味着没有其他更为有效的解决途径。
3、综合对比分析。不只去看到每种方式的优势,更要反向去看到会引入的问题,并且尽可能找出相关因素并整理考量。这样,能帮助基于当前认知去做出相对更正确的选择。

        但在做这个整理前,其实走了一截弯路——在得到问题清单后,就着手在做归类梳理。可想而知,结果的准确性和可靠性是难以保障的。回头看是有点可笑,但当时却还没太意识到。

体现出来的一些问题:
1、严谨性不足。在开始整理前,没有先充分理解每个问题,使得后续的工作建立在不稳定的基础上。
2、因果关系模糊,质疑不足。对清单中所列的问题,过于依赖表象现象,缺乏因果分析和质疑精神,导致把一些表象相关的东西当成了事实。

如何避免或改善?可能也没什么捷径,持续的反思和修炼。刚好再回头看看上个月所才记录的《思维方式#修炼》,不少点比较相似。再练习。

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

俊哥V

这是个嘛?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值