[笔记.AI]deepseek-r1的不同版本(满血版、蒸馏版、量化)

满血版:是原始的高性能模型;
蒸馏版(Distill):是指将大型模型(教师模型)的知识转移到较小的模型(学生模型)中,以保持性能的同时减少计算资源的需求;
|-使用DeepSeek-R1完整版作为教师模型,迁移到Qwen/Llama等开源架构(1.5B-70B);
|-Qwen/Llama等架构仅作为学生模型的部署载体,而非直接使用这些模型作为教师;
量化技术(FP8/INT8):是通过降低模型参数的精度来减少计算资源消耗。
对比维度满血版蒸馏版量化技术
核心技术强化学习驱动推理、长链推理(CoT) ,模型蒸馏技术迁移推理能力,支持多尺寸迁移(1.5B-70B)采用FP8/INT8量化技术,保持性能前提下降低显存占用,
模型参数6710亿提供1.5B/7B/8B/14B/32B/70B等多尺寸基于蒸馏版或满血版进行量化,参数保持原始规模
核心性能AIME2024(79.8%)/MATH-500(97.3%)/MMLU(90.8%),超越OpenAI o132B蒸馏版AIME2024(72.6%),超越Qwen2.5-32B(55.5%)FP8量化后显存需求降低50%,推理速度提升40%,
计算资源需求需多GPU服务器部署7B版本可在16GB显存显卡运行1.5B量化版可运行在普通消费级显卡
开源支持MIT协议开源开源蒸馏后的小模型提供量化工具链(LMDeploy/SGLang)
典型应用场景适用于需要强大计算能力的场景,典型如:企业级复杂推理(金融风控/基因分析)适合资源有限的场景,典型如:中小企业本地部署(客服系统/教育辅导)兼顾性能与成本,典型如:移动端/嵌入式设备(智能硬件/机器人)
独特优势完整思维链可视化支持32B模型蒸馏至1.5B仍保持70%性能FP8量化精度损失<1%
使用限制通常需要专业IT团队维护70B版本仍需高端显卡超长上下文支持较弱

其中,DeepSeek-R1系列蒸馏模型是通过“知识蒸馏(Knowledge Distillation)”技术,将R1大模型(如671B参数版本)的推理能力迁移到不同基座模型(Qwen-2.5/Llama系列)上的产物。以下是具体对应关系:

蒸馏模型参数基座模型来源
1.5BQwen2.5-1.5B
7BQwen2.5-7B
8BLlama3.1-8B-Base
14BQwen2.5-14B
32BQwen2.5-32B
70BLlama3.3-70B-Instruct

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

俊哥V

这是个嘛?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值