[笔记.AI]deepseek-r1的不同版本(满血版、蒸馏版、量化)

满血版:是原始的高性能模型;
蒸馏版(Distill):是指将大型模型(教师模型)的知识转移到较小的模型(学生模型)中,以保持性能的同时减少计算资源的需求;
|-使用DeepSeek-R1完整版作为教师模型,迁移到Qwen/Llama等开源架构(1.5B-70B);
|-Qwen/Llama等架构仅作为学生模型的部署载体,而非直接使用这些模型作为教师;
量化技术(FP8/INT8):是通过降低模型参数的精度来减少计算资源消耗。
对比维度满血版蒸馏版量化技术
核心技术强化学习驱动推理、长链推理(CoT) ,模型蒸馏技术迁移推理能力,支持多尺寸迁移(1.5B-70B)采用FP8/INT8量化技术,保持性能前提下降低显存占用,
模型参数6710亿提供1.5B/7B/8B/14B/32B/70B等多尺寸基于蒸馏版或满血版进行量化,参数保持原始规模
核心性能AIME2024(79.8%)/MATH-500(97.3%)/MMLU(90.8%),超越OpenAI o132B蒸馏版AIME2024(72.6%),超越Qwen2.5-32B(55.5%)FP8量化后显存需求降低50%,推理速度提升40%,
计算资源需求需多GPU服务器部署7B版本可在16GB显存显卡运行1.5B量化版可运行在普通消费级显卡
开源支持MIT协议开源开源蒸馏后的小模型提供量化工具链(LMDeploy/SGLang)
典型应用场景适用于需要强大计算能力的场景,典型如:企业级复杂推理(金融风控/基因分析)适合资源有限的场景,典型如:中小企业本地部署(客服系统/教育辅导)兼顾性能与成本,典型如:移动端/嵌入式设备(智能硬件/机器人)
独特优势完整思维链可视化支持32B模型蒸馏至1.5B仍保持70%性能FP8量化精度损失<1%
使用限制通常需要专业IT团队维护70B版本仍需高端显卡超长上下文支持较弱

其中,DeepSeek-R1系列蒸馏模型是通过“知识蒸馏(Knowledge Distillation)”技术,将R1大模型(如671B参数版本)的推理能力迁移到不同基座模型(Qwen-2.5/Llama系列)上的产物。以下是具体对应关系:

蒸馏模型参数基座模型来源
1.5BQwen2.5-1.5B
7BQwen2.5-7B
8BLlama3.1-8B-Base
14BQwen2.5-14B
32BQwen2.5-32B
70BLlama3.3-70B-Instruct

### 对 VLLM 进行微调和量化的流程 为了使VLLM能够在DeepSeek-R1上高效运行,通常需要对其进行特定任务的微调以及量化处理。以下是具体方法: #### 微调过程 微调是指利用目标领域的小规模数据集进一步训练预训练好的大型语言模型,使其更好地适应特定应用场景。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "path_to_vllm_model" train_dataset = ... # 用户定义的数据集加载逻辑 eval_dataset = ... training_args = TrainingArguments( output_dir="./results", num_train_epochs=3, per_device_train_batch_size=8, per_device_eval_batch_size=8, warmup_steps=500, weight_decay=0.01, logging_dir='./logs', ) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset ) trainer.train() ``` 这段代码展示了如何基于`transformers`库来设置并执行一次典型的微调操作[^1]。 #### 量化技术应用 对于资源受限环境下的部署而言,降低模型参数精度不失为一种有效手段。通过采用较低位宽表示权重可以显著减少内存占用与计算开销。 ```python import torch def quantize_model(model): """ 将浮点数类型的模型转换成低比特宽度版本。 参数: model (torch.nn.Module): 需要被量化的PyTorch模型实例 返回: torch.quantization.QuantWrapper: 已经完成量化的模型封装对象 """ qconfig = torch.quantization.get_default_qat_qconfig('fbgemm') prepared_model = torch.quantization.prepare_qat(model, {'.*': qconfig}) calibrated_model = prepare_and_calibrate(prepared_model) # 假设此函数实现了校准逻辑 quantized_model = torch.quantization.convert(calibrated_model.eval(), inplace=False) return quantized_model ``` 上述脚本提供了一个简单的例子说明怎样使用PyTorch内置工具链实现对给定神经网络结构实施量化变换的过程[^2]。 #### DeepSeek-R1上的集成 当完成了针对VLLM的优化调整之后,就可以按照官方文档指示将其迁移到DeepSeek平台之上。这可能涉及到API接口适配、服务端配置修改等方面的工作。 ```bash ollama run --quantized ./optimized_vllm_model/ ``` 这条命令假设已经存在一个经过适当准备后的压缩VLLM文件夹路径,并尝试启动它作为新的推理引擎实例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

俊哥V

这是个嘛?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值