Catalan数即卡特兰数又称卡塔兰数,是组合数学中一个常出现在各种计数问题中的数列,以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)的名字来命名。它是一个序列,为C0,C1,C2等等,其中
Cn=n+11(n2n)=(n+1)!n!(2n)!=∏k=2nkn+k
这里 n 大于等于 0,前几个 Catalan数为 C0=1,C1=1,C2=2,C3 = 5等。现请你写一段程序来计算Catalan数。
注意:此题打表过测试用例或过题给负100分。
输入格式:
为一个整数 n (0<=n<=32)。
输出格式:
为第 n 项 catalan 数 (数字特别大,建议数据类型使用 long long)。
输入样例:
5
输出样例:
42
代码如下:
#include<stdio.h>
int fack(int n)
{
if (n == 1)
return 1;
else
return (4 * n - 2) * fack(n - 1)/(n+1);
}
int main()
{
int n;
scanf("%d", &n);
int f = fack(n);
printf("%d", f);
return 0;
}
这是用递归的解法
#include<stdio.h>
int main()
{
int n,i,sum=1;
scanf("%d", &n);
for (i = 1; i <= n; i++)
{
sum = sum * (4 * i - 2) / (i + 1);
}
printf("%d",sum);
}
这是不用递归的解法