accuracy_layer

#include <functional>
#include <utility>
#include <vector>

#include "caffe/layers/accuracy_layer.hpp"
#include "caffe/util/math_functions.hpp"

namespace caffe {

template <typename Dtype>
void AccuracyLayer<Dtype>::LayerSetUp(
  const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  top_k_ = this->layer_param_.accuracy_param().top_k();//获得k,也就是正确类别排前k名算个入acc

  has_ignore_label_ =
    this->layer_param_.accuracy_param().has_ignore_label();//有没有要忽略的标签
  if (has_ignore_label_) {
    ignore_label_ = this->layer_param_.accuracy_param().ignore_label();
  }
}
/*定义中关于axis的说明:
axis指出在预测blob中,哪一维是label轴,如(N x C x H x W)的blob,axis=0,则N为label对应的维度。
axis=1,则C为label对应的维度,而剩下的N为outer样本数量, H x W为inner样本数量。由代码可知,
当axis=k时outer_num_=blob.shape[0,..,k),inner_num_=blob.shape[k+1,..,shape.size)。一般的,
label blob的维度为(N x C),N为样本数量,C为标签数量(即类别个数)。
axis=1,outer_num_=N,inner_num_=shape[2,2)=1(即没有inner)
*/
template <typename Dtype>
void AccuracyLayer<Dtype>::Reshape(
  const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  CHECK_LE(top_k_, bottom[0]->count() / bottom[1]->count())//要取的k不能比总类别数大
      << "top_k must be less than or equal to the number of classes.";
  label_axis_ =
      bottom[0]->CanonicalAxisIndex(this->layer_param_.accuracy_param().axis());//label的坐标轴
  outer_num_ = bottom[0]->count(0, label_axis_);//基本可以理解为batch中的样本数
  inner_num_ = bottom[0]->count(label_axis_ + 1);//1
  CHECK_EQ(outer_num_ * inner_num_, bottom[1]->count())
      << "Number of labels must match number of predictions; "
      << "e.g., if label axis == 1 and prediction shape is (N, C, H, W), "
      << "label count (number of labels) must be N*H*W, "
      << "with integer values in {0, 1, ..., C-1}.";
  vector<int> top_shape(0);  // Accuracy is a scalar; 0 axes.
  top[0]->Reshape(top_shape);//top[0]是总体样本正确率,标量top[1]为每个类别的正确率,向量
  if (top.size() > 1) {
    // Per-class accuracy is a vector; 1 axes.
    vector<int> top_shape_per_class(1);
    top_shape_per_class[0] = bottom[0]->shape(label_axis_);
    top[1]->Reshape(top_shape_per_class);
    nums_buffer_.Reshape(top_shape_per_class);
  }
}

template <typename Dtype>
void AccuracyLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
    const vector<Blob<Dtype>*>& top) {
  Dtype accuracy = 0;
  const Dtype* bottom_data = bottom[0]->cpu_data();//样本数*标签个数(也就是最后一个全链接的输出层节点个数)
  const Dtype* bottom_label = bottom[1]->cpu_data();
  const int dim = bottom[0]->count() / outer_num_;
  const int num_labels = bottom[0]->shape(label_axis_);
  vector<Dtype> maxval(top_k_+1);
  vector<int> max_id(top_k_+1);
  if (top.size() > 1) {
    caffe_set(nums_buffer_.count(), Dtype(0), nums_buffer_.mutable_cpu_data());
    caffe_set(top[1]->count(), Dtype(0), top[1]->mutable_cpu_data());
  }
  int count = 0;
  for (int i = 0; i < outer_num_; ++i) {//对于每个样本
    for (int j = 0; j < inner_num_; ++j) {
      const int label_value =
          static_cast<int>(bottom_label[i * inner_num_ + j]);//第i个样本的label
      if (has_ignore_label_ && label_value == ignore_label_) {//如果这个类别被忽略就计算下一个。
        continue;
      }
      if (top.size() > 1) ++nums_buffer_.mutable_cpu_data()[label_value];//batch中每个类别的总样本数,为了计算类内正确率
      DCHECK_GE(label_value, 0);
      DCHECK_LT(label_value, num_labels);
      // Top-k accuracy
      std::vector<std::pair<Dtype, int> > bottom_data_vector;
      for (int k = 0; k < num_labels; ++k) {
        bottom_data_vector.push_back(std::make_pair(
            bottom_data[i * dim + k * inner_num_ + j], k));//完成带序号的排序
      }
      std::partial_sort(
          bottom_data_vector.begin(), bottom_data_vector.begin() + top_k_,
          bottom_data_vector.end(), std::greater<std::pair<Dtype, int> >());
      // check if true label is in top k predictions
      for (int k = 0; k < top_k_; k++) {
        if (bottom_data_vector[k].second == label_value) { //如果标定的label在预测的前k个label中
          ++accuracy;
          if (top.size() > 1) ++top[1]->mutable_cpu_data()[label_value];
          break;
        }
      }
      ++count;
    }
  }

  // LOG(INFO) << "Accuracy: " << accuracy;
  top[0]->mutable_cpu_data()[0] = accuracy / count;
  if (top.size() > 1) {
    for (int i = 0; i < top[1]->count(); ++i) {
      top[1]->mutable_cpu_data()[i] =
          nums_buffer_.cpu_data()[i] == 0 ? 0 //batch中没有某一类样本就把这类样本的正确率设置为0,不然的话就正常计算
          : top[1]->cpu_data()[i] / nums_buffer_.cpu_data()[i];
    }
  }
  // Accuracy layer should not be used as a loss function.
}

INSTANTIATE_CLASS(AccuracyLayer);
REGISTER_LAYER_CLASS(Accuracy);

}  // namespace caffe

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: `add_layer`函数是一个自定义函数,可能是用来创建神经网络的层的。以下是一个简单的实现示例: ```python import tensorflow as tf def add_layer(inputs, in_size, out_size, activation_function=None): # 定义权重和偏置 Weights = tf.Variable(tf.random.normal([in_size, out_size])) biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) # 定义神经网络的输出 outputs = tf.matmul(inputs, Weights) + biases # 应用激活函数(如果有) if activation_function is not None: outputs = activation_function(outputs) return outputs ``` 该函数接受四个参数:输入`inputs`、输入层大小`in_size`、输出层大小`out_size`和激活函数`activation_function`。函数首先定义权重和偏置,并使用`tf.matmul`和`+`运算符计算神经网络的输出。如果指定了激活函数,则在输出上应用该函数。最后将输出返回。 使用该函数可以方便地构建神经网络层。例如,以下代码创建了一个输入层大小为2,输出层大小为1的神经网络层,使用sigmoid激活函数: ```python xs = tf.placeholder(tf.float32, [None, 2]) layer1 = add_layer(xs, 2, 1, activation_function=tf.sigmoid) ``` 这里的`xs`是一个占位符,用于在输入数据时被填充。 ### 回答2: 在TensorFlow中添加图层(layer)通常是指使用高级API(如tf.keras)创建模型的过程。 首先,我们需要导入必要的库: ```python import tensorflow as tf from tensorflow.keras import layers ``` 然后,我们可以使用`layers`模块提供的函数创建各种类型的图层,例如全连接层(Dense)、卷积层(Conv2D)、池化层(MaxPooling2D)等。 举一个创建全连接层的例子: ```python inputs = tf.keras.Input(shape=(input_dim,)) x = layers.Dense(128, activation='relu')(inputs) outputs = layers.Dense(output_dim, activation='softmax')(x) ``` 在这个例子中,我们首先创建了一个输入层,然后通过`layers.Dense`函数创建了一个具有128个神经元和ReLU激活函数的全连接层。将输入层作为参数传递给该函数,可以将全连接层与输入层连接起来。最后,我们通过再次使用`layers.Dense`函数创建了一个具有output_dim维度和softmax激活函数的输出层。 在创建图层后,我们可以通过将输入层作为参数传递给`tf.keras.Model`类的构造函数来创建一个模型: ```python model = tf.keras.Model(inputs=inputs, outputs=outputs) ``` 最后,我们可以使用模型进行训练和预测: ```python model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=10, batch_size=32) predictions = model.predict(x_test) ``` 需要注意的是,以上只是TensorFlow中添加图层的一个示例,实际应用时可能还需要根据具体需求对模型进行调整和配置。 ### 回答3: 在 TensorFlow 中,可以使用 add_layer 函数来添加一个新的神经网络层。这个函数可以用于创建全连接层、卷积层、池化层等不同类型的层。 首先,需要导入 TensorFlow 库:import tensorflow as tf。 然后,我们可以定义 add_layer 函数,该函数的输入参数包括输入数据、输入维度、输出维度以及激活函数等。 在函数内部,我们可以使用 tf.Variable 来定义网络层的权重和偏置,这些变量可以被 TensorFlow 自动更新和优化。 接下来,可以使用 tf.matmul 函数来进行矩阵相乘运算,从而得到网络层的输出值。 最后,我们可以通过 tf.nn 模块中的激活函数来对输出值进行激活操作,例如使用 tf.nn.relu 函数来获取 ReLU 激活函数的输出。 通过以上步骤,我们就可以使用 add_layer 函数来添加一个新的神经网络层。在实际应用中,我们可以根据具体的需求调整输入和输出的维度以及激活函数的选择,从而构建出各种不同类型的网络层。 总之,使用 add_layer 函数可以方便地添加一个新的神经网络层,并通过 TensorFlow 的自动求导功能进行反向传播和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值