实现两个数据集合并(DataFrame)

本文介绍了如何在Python中使用pandas库将两个DataFrame数据集进行水平合并,同时删除重复行,确保结果的准确性。通过`pd.concat`函数结合`reset_index`和`~result.columns.duplicated()`方法,有效地处理了数据拼接过程中的索引问题。
摘要由CSDN通过智能技术生成

  两个dataframe数据集进行横向合并。

意思就是把相同行的两个数据集拼在一起。

  # 合并两个数据集并删除重复项
    selected_features.reset_index(drop=True, inplace=True)
    second_data1.reset_index(drop=True, inplace=True)
    # 使用 concat 进行水平连接,并忽略索引
    result = pd.concat([selected_features, second_data1], axis=1)
    second_data1 = result.loc[:, ~result.columns.duplicated()]

简单有效。

这个操作是消除索引,然后再进行拼接。如果单单使用

result = pd.concat([selected_features, second_data1], axis=1)

则难以达到想要的结果。其中selected_features, second_data1,请替换成自己的数据集名字。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值