DFT的窄带滤波器组理解
在很多的应用场合,比如在雷达的多目标速度测量中,常用DFT来实现等效的窄带滤波器组。在通常的印象中,滤波器组是多速率信号处理中的内容,它是怎么和DFT有了联系的呢?
首先从简单的数学推导上来看DFT与窄带滤波器组之间的关系。DFT的定义表达式为:
利用旋转因子的周期性,上式可以很方便地改写为:
于是DFT可以写成如下的卷积形式:
上式看起来有点复杂,实际上其物理意义非常明显:对于给定的k,DFT的输出为输入信号x(n)通过一个冲激响应为exp(j*2*pi*k*n/N)的滤波器在N时刻的取值。exp(j*2*pi*k*n/N)在时域上幅度为一个门函数,对应的频谱为sinc函数,这是数字信号处理中一个基本的对应关系。也即是说,exp(j*2*pi*k*n/N)实际上就是一个窄带滤波器。对于k=0,1,… ,N-1,exp(j*2*pi*k*n/N)就构成了一组窄带滤波器,即窄带滤波器组。
了解了上述DFT与窄带滤波器组之间的关系之后,就可以从这个角度更深入地理解DFT的本质了。下面以DFT最常用的噪声抑制为例来说明。假定输入为一个受到污染的单频正弦信号,信号的功率为1,噪声的功率也为1,也即是说输入信噪比为0dB。经过1024点的DFT之后,从滤波器的角度讲,信号的功率可以认为保持不变,噪声的功率则因为滤波器的带宽仅为fs/1024,因此噪声的功率为1/1024,输出的信噪比为10*log101024=30dB。实际上,从滤波器的角度讲,信号经过DFT之后,分析带宽仅为原来的1/1024倍。这样,通过窄带滤波器后,由于信号的带宽小于分析带宽,能全部通过,而白噪声信号的带宽远大于分析带宽,仅能通过很小的一部分,这样,大部分的噪声被过滤掉了,从而提高了输出信号的信噪比,从而有利于从噪声中检测信号。