
机器学习
DeepHacking
deep learing hacking
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Pytorch使用DataLoader, num_workers!=0时的内存泄露
我在做一个超大数据集的多分类,设备Ubuntu 22.04+i9 13900K+Nvidia 4090+64GB RAM,第一次的训练的训练集有700万张,训练成功。找了很久的原因,发现内存随着训练step的增加而线性增加,猜测是内存泄露,最后定位到了DataLoader的num_workers参数(只要num_workers=0就没有问题)。Python中的list转换成tensor时,会发生内存泄漏,要避免list的使用,可以通过使用np.array来代替list。3.正确的重写Dataset方法()原创 2023-10-08 01:00:56 · 2296 阅读 · 0 评论 -
Ubuntu 18.04 从1080Ti升级到3090辛酸历程
1.卸载原有显卡驱动sudo apt-get purge nvidia*或者 sudo apt-get remove --purge nvidia*2.查看可用驱动:ubuntu-drivers devices(base) jack@JACK429:~$ ubuntu-drivers devices== /sys/devices/pci0000:00/0000:00:01.0/0000:01:00.0 ==modalias : pci:v000010DEd00002204sv00.原创 2021-03-06 07:00:29 · 867 阅读 · 1 评论 -
测试tensorflow-gpu的GPU代码,观察显卡占用情况判断
# import tensorflow as tf## sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(log_device_placement=True))# 如果为False, 检查tensorflow-gpu、cudatoolkit和cudnn版本是否对应一致# print(tf.test.is_gpu_available())from __future__ import print_function'''Ba.原创 2020-08-25 04:53:11 · 1330 阅读 · 0 评论 -
keras plot_model函数画网络结构图,问号??改成None
Ubuntu找这个目录文件anaconda3/envs/yourEnv/lib/python3.7/site-packages/tensorflow_core/python/keras/utils/vis_utils.pyWindows找这个目录文件Anaconda\envs\yourEnv\Lib\site-packages\tensorflow\python\keras\utils\vis_utils.py问题出在vis_utils.py文件中下面这个函数上面def format_原创 2020-08-21 07:02:25 · 1260 阅读 · 0 评论 -
深度学习模型运行的浮点次数FLOPs和训练参数程序获取方法
# 浮点运行次数# FLOPS:注意全大写,是floating point operations per second的缩写,意指每秒浮点运算次数,理解为计算速度。是一个衡量硬件性能的指标。# FLOPs:注意s小写,是floating point operations的缩写(s表复数),意指浮点运算数,理解为计算量。可以用来衡量算法/模型的复杂度。# In TF 2.x you have to use tf.compat.v1.RunMetadata instead of tf.RunMetada.原创 2020-08-08 05:23:55 · 3560 阅读 · 11 评论 -
学习笔记(一)什么是梯度?为什么要正则化?偏差(Bias)和方差(Variance)的关系?为了更小的误差(error),如何选择模型?
一、什么是梯度?答:▽ L就是梯度(如图),三角形符号倒过来(▽ )是梯度算子(在空间各方向上的全微分)二、为什么要正则化?原创 2020-03-18 03:13:43 · 2871 阅读 · 0 评论 -
Conda 使用技巧
# 使用conda创建虚拟环境conda create -n env_name python=3.7 cudatoolkit=10.0 cudnnpip install tensorflow-gpu==2.0.0pip install keras原创 2019-10-26 01:59:47 · 251 阅读 · 0 评论 -
10.逻辑回归-下采样、过采样、交叉验证
import numpy as npimport pandas as pdimport matplotlib.pyplot as pltfrom sklearn.preprocessing import StandardScalerfrom sklearn.model_selection import train_test_splitfrom sklearn.linear_model ...原创 2018-10-22 17:52:19 · 3099 阅读 · 1 评论 -
9.机器学习模型评价指标
1)正确率(accuracy) 正确率是我们最常见的评价指标,accuracy = (TP+TN)/(P+N),这个很容易理解,就是被分对的样本数除以所有的样本数,通常来说,正确率越高,分类器越好; 2)错误率(error rate) 错误率则与正确率相反,描述被分类器错分的比例,error rate = (FP+FN)/(P+N),对某一个实例来说,分对与分错是互斥事...原创 2018-10-19 20:10:56 · 1522 阅读 · 0 评论 -
8.基础绘图
1.离散点图代码:import numpy as npimport pandas as pdimport matplotlib.pyplot as pltpath = 'LogiReg_data.txt'data = pd.read_csv(path, header=None, names=['Exam1', 'Exam2', 'Admitted'])# 正例positi...原创 2018-10-15 00:35:13 · 303 阅读 · 0 评论 -
3. pandas学习笔记DataFrame高级
import pandas as pdimport numpy as npimport mathpd.set_option('display.max_columns', None)# 导入泰坦尼克号的训练数据集;https://www.kaggle.com/shivamp629/traincsv/version/1data = pd.read_csv("train.csv")prin...原创 2018-09-15 03:35:08 · 296 阅读 · 0 评论 -
7. Matplotlib条形图与散点图绘制
import matplotlib.pyplot as pltfrom numpy import arangeimport pandas as pdfandango_score_comparison = pd.read_csv("fandango_score_comparison.csv")print(fandango_score_comparison.shape)print(fand...原创 2018-09-17 03:55:31 · 213 阅读 · 0 评论 -
6. Matplotlib子图绘制
import matplotlib.pyplot as pltimport numpy as npimport pandas as pd# 生成一个母图fig,可以设置母图figsize大小# fig = plt.figure(figsize=(10, 3))fig = plt.figure()ax1 = fig.add_subplot(2, 2, 1)ax2 = fig.add_...原创 2018-09-17 03:08:39 · 325 阅读 · 0 评论 -
5. Matplotlib折线图绘制
import pandas as pdimport matplotlib.pyplot as plt# https://github.com/mdengler/rsandbox/blob/master/data/FRED/UNRATE.csvunrate = pd.read_csv("UNRATE.csv")print(unrate.head(12))unrate["DATE"] =...原创 2018-09-17 02:06:45 · 237 阅读 · 0 评论 -
4. pandas学习笔记Series
import pandas as pdfrom pandas import Seriesdata = pd.read_csv("fandango_score_comparison.csv")# 定位某一列series_film = data["FILM"]print(series_film[0:10])# 列类型为Seriesprint(type(series_film))# ...原创 2018-09-17 00:49:05 · 183 阅读 · 0 评论 -
2. pandas学习笔记DataFrame入门
import numpy as npimport pandas as pd# 从csv文件中读取数据grades_info = pd.read_csv('Grade.csv')# 打印pandas的类型:DataFrameprint(type(grades_info))# 打印数据类型print(grades_info.dtypes)# 打印数据的head,只显示前5条参数p...原创 2018-09-09 22:37:49 · 286 阅读 · 0 评论 -
1. Numpy学习笔记
import numpy# import numpy as np# 从txt中读取数据,delimiter表示每一行的分隔符score_info = numpy.genfromtxt('score.txt',delimiter='\t',dtype=str)print(score_info)# 查看指定函数的帮助文档print(help(numpy.genfromtxt))# ...原创 2018-09-08 03:11:04 · 203 阅读 · 0 评论