-
描述一下背景,和遇到的问题:
我在做一个超大数据集的多分类,设备Ubuntu 22.04+i9 13900K+Nvidia 4090+64GB RAM,第一次的训练的训练集有700万张,训练成功。后面收集到更多数据集,数据增强后达到了1000万张。但第二次训练4个小时后,就被系统杀掉进程了,原因是Out of Memory。找了很久的原因,发现内存随着训练step的增加而线性增加,猜测是内存泄露,最后定位到了DataLoader的num_workers参数(只要num_workers=0就没有问题)。
-
真正原因:
Python(Pytorch)中的list转换成tensor时,会发生内存泄漏,要避免list的使用,可以通过使用np.array来代替list。
-
解决办法:
自定义DataLoader中的Dataset类,然后Dataset类中的list全部用np.array来代替。这样的话,DataLoader将np.array转换成Tensor的过程就不会发生内存泄露。
-
下面给两个错误的示例代码和一个正确的代码:(都是我自己犯过的错误)
1.错误的DataLoader加载数据集方法1
# 加载数据
train_data = datasets.ImageFolder(root=TRAIN_DIR_ARG, transform=transform)
valid_data = datasets.