1. 题目
给你一个函数 f(x, y) 和一个目标结果 z,函数公式未知,请你计算方程 f(x,y) == z 所有可能的正整数 数对 x 和 y。满足条件的结果数对可以按任意顺序返回。
尽管函数的具体式子未知,但它是单调递增函数,也就是说:
f
(
x
,
y
)
<
f
(
x
+
1
,
y
)
f(x, y) < f(x + 1, y)
f(x,y)<f(x+1,y)
f
(
x
,
y
)
<
f
(
x
,
y
+
1
)
f(x, y) < f(x, y + 1)
f(x,y)<f(x,y+1)
函数接口定义如下:
interface CustomFunction {
public:
// Returns some positive integer f(x, y) for two positive integers x and y based on a formula.
int f(int x, int y);
};
你的解决方案将按如下规则进行评判:
- 判题程序有一个由 CustomFunction 的 9 种实现组成的列表,以及一种为特定的 z 生成所有有效数对的答案的方法。
- 判题程序接受两个输入:function_id(决定使用哪种实现测试你的代码)以及目标结果 z 。
- 判题程序将会调用你实现的 findSolution 并将你的结果与答案进行比较。
- 如果你的结果与答案相符,那么解决方案将被视作正确答案,即 Accepted 。
2. 参考
函数为单调递增,因此我们从小到大进行枚举 x x x,并且从大到小枚举 y y y,当固定 x x x 时,不需要重头开始枚举所有的 y y y,只需要从上次结束的值开始枚举即可。
3. 代码
class Solution:
def findSolution(self, customfunction: 'CustomFunction', z: int) -> List[List[int]]:
ans = []
y = 1000
for x in range(1, 1001):
while y and customfunction.f(x, y) > z:
y -= 1
if y == 0:
break
if customfunction.f(x, y) == z:
ans.append([x, y])
return ans
- 时间限制:
for循环 判断 循环
while循环仅判断