Uva12230Crossing Rivers (数学期望)

该博客介绍了Uva12230问题,一个人从A到B穿越河流的数学期望时间计算。内容包括题目的描述、输入输出示例以及解题思路。解题关键在于理解期望作为平均值的概念,分析了最坏情况和最好情况的过河时间,并得出平均时间是2*L/V的结论。
摘要由CSDN通过智能技术生成

题目大意

一个人从A到B,AB的距离是d,它们中间有n条河。给出河的左岸距离A的距离dist,河的宽度L,河里船的速度V。船的位置是[0, L]随机等可能的,方向也是随机等可能的。问从A走到B的期望时间。

input

1 1
0 1 2
0 1
0 0

output

Case 1: 1.000
Case 2: 1.000

idea

这个题目就是最简单的期望,期望可以看成是平均值
最坏情况下过河花费的时间是 3 * L / V (船刚刚走)
最好的情况下过河花费的时间是 L / V(船正好在)
平均时间是 2 * L / V

code

#include <bits/stdc++.h>
using namespace std;

int main()
{
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值