蛋白质肽链搜索与高效求逆算法研究
1. 蛋白质构象搜索
1.1 蛋白质肽链参数
蛋白质肽链的结构通常可以由以下参数表示:
- 键长:$b$
- 键角:$\theta$
- $C_{\alpha}-N$ 键的二面角:$\varphi$
- $C_{\alpha}-C$ 键的二面角:$\psi$
- $C - N$ 键的二面角:$\omega$
这些参数决定了蛋白质肽链的三维构象。在旋转模型中,键长和键角保持其原始状态值不变,但二面角是可变的。
1.2 适应度函数
为了比较预测的候选结构与模板结构,将均方根偏差(RMSD)用于适应度函数中。对于结构 $x$ 的 $N$ 个节点位置和结构 $y$ 的相应 $N$ 个节点,带有加权因子 $w(i)$,RMSD 定义为:
[
RMSD(N; x, y) = \sqrt{\frac{\sum_{i = 1}^{N} w(i) (x_i - y_i)^2}{\sum_{i = 1}^{N} w(i)}}
]
如果要在原子水平上比较两个结构,节点就是原子;也可以在单体水平上比较,此时节点是单体。如果预测结构与模板结构相同,RMSD 应为零,但偏移会阻止这种情况发生。我们真正想要的是两个结构之间的最小 RMSD。这里使用 IP - mGA 搜索算法,该算法可以将一个结构移动到另一个结构上并进行评估,以最小化 RMSD。适应度函数定义为:
[
Fitness = - RMSD(N; x, y)
]
当适应度函数达到全局最大值时,就找到了所需的构象。
订阅专栏 解锁全文
7

被折叠的 条评论
为什么被折叠?



