现有村落间道路的统计数据表中,列出了有可能建设成标准公路的若干条道路的成本,求使每个村落都有公路连通所需要的最低成本。
输入格式:
输入数据包括城镇数目正整数N(≤1000)和候选道路数目M(≤3N);随后的M行对应M条道路,每行给出3个正整数,分别是该条道路直接连通的两个城镇的编号以及该道路改建的预算成本。为简单起见,城镇从1到N编号。
输出格式:
输出村村通需要的最低成本。如果输入数据不足以保证畅通,则输出−1,表示需要建设更多公路。
输入样例:
6 15
1 2 5
1 3 3
1 4 7
1 5 4
1 6 2
2 3 4
2 4 6
2 5 2
2 6 6
3 4 6
3 5 1
3 6 1
4 5 10
4 6 8
5 6 3
输出样例:
12
#include<stdio.h>
#include<string.h>
int map[1001][1001];
int minCost[1001];//记录与该顶点邻接的边最小权值
int visited[1001];//记录是否访问过
int N,M;
int min(int a,int b)
{
return a > b ? b : a;
}
int prime()
{
int i,sum=0,v;
for(i=1;i<=N;i++)
minCost[i]=99999999;//初始化为最大
minCost[1]=0;
while(1)
{
v = -1;
for(i=1;i<=N;i++)//找到权值最小的边所对应的顶点
{
if(!visited[i]&&(v==-1||minCost[v]>minCost[i]))
v = i;
}
if(v==-1)
break;//说明顶点都已经经过了
if(minCost[v]==99999999)
return 0;//如果有个孤立顶点,最小权值不会变,可以判断图是否连通
visited[v]=1;
sum+=minCost[v];
for(i=1;i<=N;i++)
{
if(map[v][i])
minCost[i]=min(minCost[i],map[v][i]);//每次更新与顶点邻接的边的最小权值
}
}
return sum;
}
int main()
{
int i;
int city1,city2,cost;
scanf("%d %d",&N,&M);
for(i=0;i<M;i++)
{
scanf("%d %d %d",&city1,&city2,&cost);
map[city1][city2]=cost;//为0的值都是不关联的
map[city2][city1]=cost;
}
int sum = prime();
if(sum)
printf("%d\n",sum);
else
printf("-1\n");
return 0;
}
prime感觉就是找当前没访问过的点中权值最小的;
然后以它为中心更新它可以连接的点的权值 :
在(map[v][i])里找
(这可以是无向图也可以是双向图)