刷题回顾:Leetcode5最长回文子串

每天一遍感谢灵神!

题目

给你一个字符串s,找到s中的最长回文子串,例子如下:
s = ‘abbcd’ >> ‘abbc’

知识点

区间型动态规划
字符串substring方法

思路

怎么会想到用DP?首先明确回文子串怎么样才叫做回文,假设给你一个’abac’字符串,不妨先以小见大,从a开始a对于本身就是一个回文字符子串,ab不回文,aba回文,abac不会文,在这个过程我们实际上是遍历了字符串下标从0到n-1的所有结果,但是看本题我们还需要找最长的回文子串,那是不是左区间的下标是不能写死的啊。
我们确定一个区间,然后这个区间不断向外扩充,并在这个扩充过程中有逻辑需求需要完成的,我们可以用动态DP去解决。像是在这到题目中,这个扩充过程的区间很好找(有个字符串,很容易确定下标),中间的逻辑需求就是怎么判断回文。用以小见大的思想,就先从相邻的两个字符进行比较,然后向外扩充。
根据动态DP思想,这题的转移方程很好找 >> dp[i][j] = dp[i+1][j-1]

题解

class Solution {
    public String longestPalindrome(String s) {
        // 区间型动态规划
        // dp[i][j] = dp[i+1][j-1]
        char[] arr = s.toCharArray();
        int n = s.length();
        boolean[][] dp = new boolean[n][n];
        int maxLen = 1;
        int start = 0;
        if (n < 2){
            return s;
        }

        for (int i = 0; i < n; i++){
            dp[i][i] = true;
        }
        
        for (int i = n - 1; i >= 0; i--){
            for (int j = i + 1; j < n; j++){
                if (arr[i] != arr[j]){
                    dp[i][j] = false;
                }else{
                    if (j - i < 2){
                        dp[i][j] = true;
                    }else{
                        dp[i][j] = dp[i+1][j-1];
                    }
                }
                if (dp[i][j] && j-i+1 > maxLen){
                maxLen = j - i + 1;
                start = i;
                }
            }
            

        }
        return s.substring(start, start+maxLen); // substring是左闭右开的


    }
}

疑问

为什么转移过程中i是–而j要++呢

从转移方程以及区间DP的扩充区间整个抽象移动过程来说,i是要不断往左,而j是需要不断往右的(可以结合图像进行理解)。

记住substring的参数是左闭右开的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值