Hook length formula 学习笔记 UVALive 6625

最近做到一个关于杨氏矩阵的题目。 UVALive 6625

题目大意是用n以内的数填充杨氏矩阵,要求行严格递增,列不严格递增。 求方案数。 

数据范围很小,我直接上爆搜,结果TLE了。 后来发现一位学长用爆搜过了,可能和搜索顺序有点关系,我是按列搜索,学长是按行。

此题的标算应该是状压dp,因为按行是严格递增的,所以可以 按列划分阶段,状态存储这一行用了哪些数即可。

 

其实这题还可以直接套公式。

行和列都严格递增的杨氏矩阵 方案数是 

 

行严格递增列不严格自增,只能填数1-r的方案数是

 

参考下面的文章

https://en.wikipedia.org/wiki/Young_tableau

https://en.wikipedia.org/wiki/Hook_length_formula

 

对于第一个公式的详细证明 可以看下面这篇论文:

http://ocw.library.nenu.edu.cn/pluginfile.php/30614/mod_resource/content/1/Probabilistic%20proof.pdf

 

第二个公式的证明 我在网上没能找到...就当是个偏门的小知识记住吧。

转载于:https://www.cnblogs.com/vb4896/p/6397139.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值