上篇概要性介绍了投研的组织架构、工作流程和国内相关法规。持续关注公众号的读者,应该注意到,作者曾在《全球首只人工智能ETF的些许思考》中简单介绍过智能投研,本篇咱们集中聊聊智能投研。
一、智能投研概念
金融科技领域很多概念都没有权威、统一的定义,智能投研也一样。作者从金融科技视角认为,智能投研是指基于人工智能、大数据、云计算等现代科技手段,获取、处理、分析海量相关数据,生成投资观点和报告。这里用到的关键人工智能技术包括自然语言处理(NLP,包括自然语言理解NLU、自然语言生成NLG等)、知识图谱等,人工智能提供算法和工具,大数据提供素材,云计算则提供算力。
需要强调的是,投研和投顾在国内均属于投资咨询业务范畴(详见上篇法规介绍章节),展业需要遵守相关业务规定。国内虽尚未出台针对性的法规,但智能投研和智能投顾并没有从本质上改变投研和投顾业务的本质。根据国际成熟展业情况看,智能投研、智能投顾分别主要针对机构(基金公司、券商资管、银行资管、保险资管等)和普通投资者开展,两者虽有关联,但服务内容及目标完全不同。
二、智能投研平台
国际上,智能投研平台的标杆企业是Kensho(2018年初已被标普公司收购)。现实中,多数科技公司都是以平台的方式提供主题搜索、图谱展现、线索发现、自动化投研报告等智能投研服务,同时也兼具了传统信息服务平台的常规功能比如行情、财务信息等。最理想的平