自从上次在写完《数学建模简明教程-基于python》第六章-线性规划的课后习题后,我就开始思考接下来到底写那一章了,感觉纠结了很久。我把第七章非线性规划和第四章的常微分方程的部分都学习了一遍,然后决定先写常微分方程,可能是在程序或模型书写上,非线性规划似乎和线性规划没有多大区别,如果又和线性规划一样写模型求解可能会有点重复。所以我决定先学习常微分方程,有一点陌生,也有一点神秘感,也许是对新领域的渴望促使我选择先搞定常微分方程这一章,但是作为一个大二会计专业的学生,是没有学过常微分方程的。一切都要从头开始。
在看b站
王树尧的《运输问题建模》时,人家在视频提到:"自古深情留不住,唯有套路得心。"是啊,也正是我有那么一丝深情,不想匆匆写完常微分方程课后习题,实则根本没学过常微分方程,那不就彻彻底底地是学套路了啊!于是我决定在mook上自学浙大的常微分方程,不过,该常微分方程课程中讲授的也主要是面向应用的,并没有对什么微分方程解的存在性什么的进行证明。
自从我开始在mook上学习常微分方程开始,过了大概一个月才陆陆续续地把视频刷完,但是并没有刷题巩固(没想到去刷mook题目,自己也有点懒),也没有匹配的教材(教材是蔡老师的《常微分方程》,我只借到一本张祥的《常微分方程》),所以导致我后面的视频都看得云里雾里,只想着看完了事。此外,这一个多月里先后自己参加了MathorCup和五一数学建模竞赛,以及其他各种乱七八糟的事情,也导致我没有足够地时间去连续地学习常微分方程,还是耽搁了很久。但好歹也是在这一个月刷完了视频,对常微分方程有了相对全面的了解,就速度上也比学校里正常学是要快得多,当然质量就难说了。
不知不觉地,今天就在图书馆把视频看完了。看到“30时13分钟”我不禁感慨,人的一生不过几万天,我万分之一的时光就如此逝去了QAQ。这一且是否值得,是否有意义?
要是能清楚地知道自己怎么做,花多少时间能到达一个多高地水平,那我想自己会更加有目标,有动力地去学习。也就是说要怎样才能花最少的时间,获得最大的、想要达到的掌握程度。就像看碎石图,可以直观地看到那个点。
如果真地要学好常微分方程,那光光视频地时间是远远不够地,课后可能还要在花一倍、两倍、甚至三倍地时间去钻研。
不管怎样,我都要再次出发。
编辑