1一棵度为3的树有2个度为1的结点,3个度为2的结点,4个度为3的结点,则有多少个叶子结点?
解:
(1)三叉树结点的度数均不大于3,结点总数应等于i度结点数(记为ni)和 N=no+n1+n2+n3 ①
(2)i度结点有i个孩子,根结点不是任何结点的孩子,结点总数为:N=n1+2n2+3n3+1 ②
联立①②得:no=n2+2n3+1=3+8+1=12
2.已知一棵度为3的树有2个度为1的结点,3个度为2的结点,4个度3的结点,则该树有几个叶子结点?
解:
设该树中的叶子数为n0个.该树中的总结点数为n个,则有:
n=n0+n1+n2+…+nm ③
又有除根结点外,树中其他结点都有双亲结点,且是唯一的(由树中的分支表示),所以,有双亲的结点数为:
n-1=0n0+1n1+2n2+…+mnm ④
联立③④得:
叶子数:n0=1+0n1+1n2+2*n3+…+(m-1)*nm