贪心算法
贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。也就
是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。
贪心算法思路:
- 建立数学模型来描述问题;
- 把求解的问题分成若干个子问题;
- 对每一子问题求解,得到子问题的局部最优解;
- 把子问题的解局部最优解合成原来解问题的一个解
利用贪心算法解题,需要注意两个问题:
- 问题是否适合用贪心法求解。用贪心法解题很方便,但它的适用范围很小,
判断一个问题是否适合用贪心法求解,目前还没有一个通用的方法,在信息学竞
赛中,需要凭个人的经验来判断。 - 确定了可以用贪心算法之后,如何选择一个贪心标准,才能保证得到问题的
最优解。在选择贪心标准时,我们要对所选的贪心标准进行验证才能使用,不要
被表面上看似正确的贪心标准所迷惑。
单源最短路径问题
给定带权有向图 G=(V,E),其中每条边的权是非负实数。另外,还给定 V 中的
一个顶点,称为源。现在要计算从源到所有其它各顶点的最短路长度。这里路的
长度是指路上各边权之和。
求解思想:解最短路径的狄斯奎诺(Dijkstra)算法
(1)采用二维数组邻接矩阵的形式储存图并将图初始化;
(2)选择其中一个顶点作为计算最短路径的起点。
(3)构造一个一维数组 dis[n],其中 n 是顶点个数,dis 用来记录最短路径
距离。初始化 dis,其值为图中各点到起点的直接距离(即邻接顶点记为其权值,
不相邻的顶点记为∞);
(4)每次在 dis 数组中找出最小值,该值就是起点到该点的最短路径距离,
(可以将该点加一个标志位已记录该点路径已确定);
(5)在加入了一个新的确定了点之后就需要更新 dis 数组,看其余点能否通
过这个确定的点到达起始点且距离能够更短。
(6)重复 4、5 步,直到所有点都找到了最短路径。
源码:
public class Dijkstra {
static int M=10000;//(此路不通)
static String[] path; //存放从start到其他各点的最短路径的字符串表示,便于打印路径 ;
public static void main(String[] args) {
// 用二维数组保存单源有向图数据,g[i][j]表示i->j的距离
int[][] g = {
{0,10,M,30,100},
{M,0,50,M,M},
{M,M,0,M,10},
{M,M,20,0,60},
{M,M,M,M,0}
};
int start=0; //表示从节点0开始
int[] shortPath = Dijsktra(g,start);
for(int i = 1;i < shortPath.length;i++)
System.out.println("从"+(start+1)+"出发到"+(i+1)+"的最短距离为:"+shortPath[i]);
System.out.println("=========================");
for(int i=1;i<path.length;i++){
System.out.println("从"+(start+1)+"出发到"+(i+1)+"的最短路径为:"+path[i]);
}
}
public static int[] Dijsktra(int[][] g,int start){
//接受一个有向图的权重矩阵,和一个起点编号start(从0编号,顶点存在数组中)
//返回一个数组,表示从start到它的最短路径长度
int n = g.length; //顶点个数
int[] shortPath = new int[n]; //存放从start到其他各点的最短路径
path=new String[n]; //存放从start到其他各点的最短路径的字符串表示
for(int i=0;i<n;i++)
path[i]=new String((start+1)+"-->"+(i+1));
boolean[] s=new boolean[n];//顶点放入或不放入的标志
//初始化,第一个顶点求出
shortPath[start] = 0;
s[start] = true; //第一个定点放入
for(int count = 1;count <= n - 1;count++) //要加入n-1个顶点
{
int k = -1; //选出一个距离初始顶点start最近的未标记顶点
int dmin = Integer.MAX_VALUE;
for(int i = 0;i < n;i++)
{
if(s[i] == false && g[start][i] < dmin)
{
dmin = g[start][i];
k = i;
}
}
//将新选出的顶点标记为已求出最短路径,且到start的最短路径就是dmin
shortPath[k] = dmin;
s[k] = true;
//以k为中间点,修正从start到未访问各点的距离
for(int i = 0;i < n;i++)
{
if(s[i] == false && g[start][k] + g[k][i] < g[start][i]){
g[start][i] = g[start][k] + g[k][i];
path[i]=path[k]+"-->"+(i+1);
}
}
}
return shortPath;
}
}