南瓜书公式详解------第十四章-1(贝叶斯网络、概率图模型)

名词解释

概率图模型(Probabilistic Graphical Model,PGM)是一组用于表示和计算多个随机变量之间复杂关系的模型。这些模型利用图论中的节点和边来表示变量及其条件依赖关系,从而简化了概率推理和学习任务。以下是概率图模型的一些关键概念和类型:

  1. 节点(Nodes):表示随机变量,可以是离散的或连续的。

  2. 边(Edges):表示变量之间的依赖关系。如果两个节点之间有直接的边相连,这意味着它们之间存在直接的概率依赖。

  3. 图(Graph):由节点和边组成的整体结构,可以是无向的或有向的。

  4. 有向图(Directed Graph):如果图中的边具有方向性,通常表示为有向无环图(DAG),这种图用于表示变量之间的因果关系。

  5. 无向图(Undirected Graph):边没有方向,通常用于表示变量之间的对称关系,如马尔可夫随机场。

  6. 贝叶斯网络(Bayesian Network):一种有向图模型,用于表示变量之间的条件依赖关系和因果关系。

  7. 马尔可夫随机场(Markov Random Field,MRF):一种无向图模型,用于表示变量之间的相互作用,常用于图像处理和计算机视觉。

  8. 链图模型(Chain Graph Model):结合了有向和无向图的特点,可以处理更复杂的依赖结构。

  9. 联合概率分布(Joint Probability Distribution):通过图模型中节点和边的结构,可以定义变量的联合概率分布。

  10. 条件独立性(Conditional Independence):在给定某些变量的条件下,某些变量集合可能相互独立。这是概率图模型的核心概念之一。

  11. 因子分解(Factorization):联合概率分布可以通过图模型中的团(cliques)或最大团(maximal cliques)的势函数(potential functions)进行分解。

  12. 概率推断(Probabilistic Inference):利用图模型进行概率计算,如计算条件概率或边际概率。

  13. 学习(Learning):从数据中学习图模型的参数,可以是参数学习(学习势函数的参数)或结构学习(学习图的拓扑结构)。

概率图模型在机器学习、人工智能、计算机视觉和自然语言处理等领域有广泛的应用,如用于分类、聚类、异常检测、因果推断和推荐系统等任务。通过图模型,可以更直观地理解和处理变量之间的复杂关系。

式14.1

P ( x 1 , y 1 , … , x n , y n ) = P ( y 1 ) P ( x 1 ∣ y 1 ) ∏ i = 2 n P ( y i ∣ y i − 1 ) P ( x i ∣ y i ) \begin{aligned} P\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)=P\left(y_{1}\right) P\left(x_{1} | y_{1}\right) \prod_{i=2}^{n} P\left(y_{i} | y_{i-1}\right) P\left(x_{i} | y_{i}\right) \end{aligned} P(x1,y1,,xn,yn)=P(y1)P(x1y1)i=2nP(yiyi1)P(xiyi)
这个公式表示的是一组随机变量 x 1 , y 1 , … , x n , y n x_1, y_1, \ldots, x_n, y_n x1,y1,,xn,yn 的联合概率分布,通常出现在隐马尔可夫模型(Hidden Markov Model, HMM)或条件随机场(Conditional Random Field, CRF)等序列模型中。公式中各个部分的含义如下:

  • P ( x 1 , y 1 , … , x n , y n ) P(x_1, y_1, \ldots, x_n, y_n) P(x1,y1,,xn,yn):随机变量 x 1 , y 1 , … , x n , y n x_1, y_1, \ldots, x_n, y_n x1,y1,,xn,yn 的联合概率。

  • P ( y 1 ) P(y_1) P(y1):序列中第一个隐变量 y 1 y_1 y1 的初始概率分布。

  • P ( x 1 ∣ y 1 ) P(x_1 | y_1) P(x1y1):给定第一个隐变量 y 1 y_1 y1 的条件下,第一个观测变量 x 1 x_1 x1 的条件概率分布。

  • ∏ i = 2 n P ( y i ∣ y i − 1 ) \prod_{i=2}^{n} P(y_i | y_{i-1}) i=2nP(yiyi1):序列中从 y 2 y_2 y2 y n y_n yn 的所有隐变量的转移概率,表示在给定前一个隐变量 y i − 1 y_{i-1} yi1 的条件下,当前隐变量 y i y_i yi 的概率。

  • P ( x i ∣ y i ) P(x_i | y_i) P(xiyi):对于 i = 2 , … , n i = 2, \ldots, n i=2,,n,每个观测变量 x i x_i xi 在给定对应的隐变量 y i y_i yi 的条件下的概率分布。

这个公式的意思是,整个序列的联合概率可以通过以下步骤计算得出:

  1. 计算第一个隐变量 y 1 y_1 y1 的初始概率。
  2. 计算给定 y 1 y_1 y1 的条件下,观测变量 x 1 x_1 x1 的概率。
  3. 对于序列中的每个后续隐变量 y i y_i yi(从 i = 2 i = 2 i=2 n n n),计算在给定前一个隐变量 y i − 1 y_{i-1} yi1 的条件下 y i y_i yi 的概率。
  4. 对于每个后续观测变量 x i x_i xi,计算在给定对应的隐变量 y i y_i yi 的条件下 x i x_i xi 的概率。
  5. 将所有这些概率乘积起来,得到整个序列的联合概率。

这种分解是序列模型中的典型特征,它允许我们以一种有效的方式处理序列数据,即使在隐变量的存在使得直接计算变得复杂。在隐马尔可夫模型中,这种分解是计算和学习模型参数的关键。

式14.2

P ( x ) = 1 Z ∏ Q ∈ C ψ Q ( x Q ) P(\mathbf{x})=\frac{1}{Z} \prod_{Q \in C} \psi_{Q}\left(\mathbf{x}_{Q}\right) P(x)=Z1QCψQ(xQ)

在机器学习中,特别是在概率图模型领域,这个公式是一个通用的概率分布表达式,用于描述一组变量 x \mathbf{x} x 的联合概率。这个表达式具有以下几个关键要素:

  1. P ( x ) P(\mathbf{x}) P(x): 这是变量集合 x \mathbf{x} x 的联合概率分布。

  2. ψ Q ( x Q ) \psi_{Q}(\mathbf{x}_Q) ψQ(xQ): 这是定义在变量子集 Q Q Q 上的局部函数或因子。每个因子 ψ Q \psi_{Q} ψQ 描述了子集 Q Q Q 中变量的相互作用或依赖关系。这里的 x Q \mathbf{x}_Q xQ 表示集合 Q Q Q 中的所有变量。

  3. C C C: 这是所有可能的变量子集的集合,这些子集定义了模型中的所有因子。

  4. Z Z Z: 这是归一化常数(也称为配分函数),它确保了所有可能的变量组合的概率之和为1。它通常通过以下方式计算得出:

Z = ∑ x ∏ Q ∈ C ψ Q ( x Q ) Z = \sum_{\mathbf{x}} \prod_{Q \in C} \psi_{Q}(\mathbf{x}_Q) Z=xQCψQ(xQ)

这里的求和是对所有可能的变量组合 x \mathbf{x} x 进行的。

  1. 分解性:这个表达式展示了如何将一个复杂的概率分布分解为多个局部因子的乘积。这种分解是概率图模型的核心特性,它简化了概率计算和模型的表示。

  2. 模型类型:这种形式的模型可以代表多种类型的概率图模型,如马尔可夫随机场(MRF)、条件随机场(CRF)、贝叶斯网络等。

  3. 应用:这类模型在机器学习中有广泛的应用,包括但不限于:

    • 图像识别和分割
    • 自然语言处理
    • 生物信息学中的基因网络建模
    • 社交网络分析
  4. 学习过程:在实际应用中,模型的参数(即因子 ψ Q \psi_{Q} ψQ)通常通过训练数据学习得到。这可能涉及到最大似然估计、贝叶斯推断或其他优化技术。

  5. 推断:一旦模型被训练,它就可以用于概率推断任务,如预测、分类或特征重要性评估。

这种概率分布的表达方式是机器学习中处理复杂数据结构和进行概率推理的强大工具。

式14.3

P ( x ) = 1 Z ∗ ∏ Q ∈ C ∗ ψ Q ( x Q ) P(\mathbf{x})=\frac{1}{Z^*} \prod_{Q \in C*} \psi_{Q}\left(\mathbf{x}_{Q}\right) P(x)=Z1QCψQ(xQ)
在机器学习,尤其是概率图模型和贝叶斯统计中,表达式 P ( x ) = 1 Z ∗ ∏ Q ∈ C ∗ ψ Q ( x Q ) P(\mathbf{x}) = \frac{1}{Z^*} \prod_{Q \in C^*} \psi_{Q}(\mathbf{x}_Q) P(x)=Z1QCψQ(xQ) 描述了一个系统的联合概率分布 P ( x ) P(\mathbf{x}) P(x),其中 x \mathbf{x} x 表示所有随机变量的集合。这个表达式是概率图模型中因子分解的一个例子,具体来说:

  • ψ Q ( x Q ) \psi_{Q}(\mathbf{x}_Q) ψQ(xQ) 是一个局部函数或因子,它定义了集合 Q Q Q 中变量 x Q \mathbf{x}_Q xQ 的相互作用。集合 Q Q Q 是系统中的一个子集,可以包含一个或多个变量。这些因子通常表示变量之间的依赖关系或相互作用。
  • C ∗ C^* C 表示模型中所有的子集或因子的集合。
  • Z ∗ Z^* Z 是归一化常数(也称为配分函数),它确保了所有可能的变量组合的概率之和为1。计算如下:

Z ∗ = ∑ x ∏ Q ∈ C ∗ ψ Q ( x Q ) Z^* = \sum_{\mathbf{x}} \prod_{Q \in C^*} \psi_{Q}(\mathbf{x}_Q) Z=xQCψQ(xQ)

这里的求和是对所有可能的变量组合 x \mathbf{x} x 进行的。

这种联合概率分布的表示方法有几个关键特点:

  1. 分解性:联合概率分布被分解为局部因子的乘积,这使得计算和理解变得更加简单,尤其是在变量数量很大时。

  2. 灵活性:通过选择不同的 ψ Q \psi_{Q} ψQ 函数,可以表示不同类型的概率模型,包括马尔可夫随机场(MRF)、条件随机场(CRF)和贝叶斯网络等。

  3. 归一化:通过归一化常数 Z ∗ Z^* Z,确保了概率分布的总和为1,满足概率论的基本要求。

  4. 推断能力:这种表示形式允许进行概率推断,例如计算给定某些变量条件下其他变量的概率分布。

在机器学习中,这种类型的概率模型可以用于:

  • 分类:通过学习变量之间的条件概率来预测类别标签。
  • 特征选择:识别对预测目标变量最有用的特征。
  • 异常检测:识别那些与学习的概率模型不匹配的数据点。
  • 聚类:将数据点分组为具有相似特征的集合。

学习这种模型通常涉及到参数估计,可以通过最大似然估计、贝叶斯方法或其他机器学习技术来完成。一旦模型被训练,它就可以用于预测、分类或其他类型的数据分析任务。

式14.4

P ( x A , x B , x C ) = 1 Z ψ A C ( x A , x C ) ψ B C ( x B , x C ) P\left(x_{A}, x_{B}, x_{C}\right)=\frac{1}{Z} \psi_{A C}\left(x_{A}, x_{C}\right) \psi_{B C}\left(x_{B}, x_{C}\right) P(xA,xB,xC)=Z1ψAC(xA,xC)ψBC(xB,xC)
在概率图模型和贝叶斯网络中,这个表达式描述了三个随机变量 x A , x B , x_A, x_B, xA,xB, x C x_C xC 的联合概率分布 P ( x A , x B , x C ) P(x_A, x_B, x_C) P(xA,xB,xC)。这个分布可以通过因子的乘积来表示,其中 ψ A C \psi_{AC} ψAC ψ B C \psi_{BC} ψBC 是因子(或称配分函数的局部函数),它们分别描述了变量对 ( x A , x C ) (x_A, x_C) (xA,xC) ( x B , x C ) (x_B, x_C) (xB,xC) 之间的相互作用。这里的 Z Z Z 是归一化常数,确保整个联合概率分布的总和为1。

具体来说:

  • ψ A C ( x A , x C ) \psi_{AC}(x_A, x_C) ψAC(xA,xC) 是一个函数,它编码了变量 x A x_A xA x C x_C xC 之间的联合关系。
  • ψ B C ( x B , x C ) \psi_{BC}(x_B, x_C) ψBC(xB,xC) 是一个函数,它编码了变量 x B x_B xB x C x_C xC 之间的联合关系。
  • 1 Z \frac{1}{Z} Z1 是归一化因子,它确保了所有可能的 x A , x B , x_A, x_B, xA,xB, x C x_C xC 组合的概率之和为1。数学上, Z Z Z 被称为配分函数,计算如下:

Z = ∑ x A ∑ x B ∑ x C ψ A C ( x A , x C ) ψ B C ( x B , x C ) Z = \sum_{x_A} \sum_{x_B} \sum_{x_C} \psi_{AC}(x_A, x_C) \psi_{BC}(x_B, x_C) Z=xAxBxCψAC(xA,xC)ψBC(xB,xC)

这里的求和是对所有可能的变量取值进行的。

这种表示方法通常用于概率图模型,如马尔可夫随机场(MRF)和条件随机场(CRF),它们通过局部因子的乘积来表达整个系统的联合概率分布。这种方法的一个关键优势是它允许我们以一种非常灵活的方式来表达和推断复杂系统中的概率关系。

在机器学习中,这种类型的概率模型可以用于各种任务,包括但不限于:

  • 特征选择和数据建模。
  • 预测建模,其中我们可以根据一些变量的值来预测其他变量的值。
  • 异常检测,通过识别与模型预测的概率分布显著不同的数据点。
  • 聚类分析,通过将数据点分组为具有相似特征的集合。

在实际应用中,这些模型可能需要通过训练数据来学习,以估计模型参数,如因子函数中的权重或偏差项。这通常涉及到优化问题,如最大似然估计或贝叶斯推断。

式14.5

P ( x A , x B ∣ x C ) = ψ A C ( x A , x C ) ∑ x A ′ ψ A C ( x A ′ , x C ) ⋅ ψ B C ( x B , x C ) ∑ x B ′ ψ B C ( x B ′ , x C ) P\left(x_{A}, x_{B} | x_{C}\right) =\frac{\psi_{A C}\left(x_{A}, x_{C}\right)}{\sum_{x_{A}^{\prime}} \psi_{A C}\left(x_{A}^{\prime}, x_{C}\right)} \cdot \frac{\psi_{B C}\left(x_{B}, x_{C}\right)}{\sum_{x_{B}^{\prime}} \psi_{B C}\left(x_{B}^{\prime}, x_{C}\right)} P(xA,xBxC)=xAψAC(xA,xC)ψAC(xA,xC)xBψBC(xB,xC)ψBC(xB,xC)
这个表达式是用来计算在给定变量 x C x_C xC 的条件下,变量 x A x_A xA x B x_B xB 的联合条件概率 P ( x A , x B ∣ x C ) P(x_A, x_B | x_C) P(xA,xBxC)。这个表达式是条件概率的一个具体实例,通常在概率图模型中使用。下面是对表达式各部分的解释:

  1. ψ A C ( x A , x C ) \psi_{AC}(x_A, x_C) ψAC(xA,xC) ψ B C ( x B , x C ) \psi_{BC}(x_B, x_C) ψBC(xB,xC) 是与变量 x A x_A xA x C x_C xC 以及 x B x_B xB x C x_C xC 相关的因子函数,它们分别表示这些变量对之间的相互作用或依赖关系。

  2. 归一化因子:表达式中的两个分数分别对 x A x_A xA x B x_B xB 进行了归一化,确保在给定 x C x_C xC 的条件下, x A x_A xA x B x_B xB 的所有可能状态的概率之和为1。

  3. ∑ x A ′ ψ A C ( x A ′ , x C ) \sum_{x_A'} \psi_{AC}(x_A', x_C) xAψAC(xA,xC) ∑ x B ′ ψ B C ( x B ′ , x C ) \sum_{x_B'} \psi_{BC}(x_B', x_C) xBψBC(xB,xC) 是对 x A x_A xA x B x_B xB 的所有可能状态求和,这些求和作为归一化因子,使得每个分数都是一个有效的概率分布。

  4. 联合条件概率:整个表达式 P ( x A , x B ∣ x C ) P(x_A, x_B | x_C) P(xA,xBxC) 表示在已知变量 x C x_C xC 的情况下,变量 x A x_A xA x B x_B xB 同时出现的概率。这是通过将 x A x_A xA x C x_C xC 之间的联合概率与 x B x_B xB x C x_C xC 之间的联合概率相乘得到的。

这种类型的概率计算在概率图模型中非常重要,特别是在条件随机场(Conditional Random Fields, CRFs)和贝叶斯网络中,它们用于建模变量之间复杂的依赖关系,并进行概率推断。在实际应用中,这种计算可以帮助我们理解在已知某些条件或证据的情况下,其他变量的概率分布情况。

式14.6

P ( x A ∣ x C ) = ψ A C ( x A , x C ) ∑ x A ψ A C ( x A ′ , x C ) P\left(x_{A} | x_{C}\right) =\frac{\psi_{A C}\left(x_{A,} x_{C}\right)}{\sum_{x_{A}} \psi_{A C}\left(x_{A}^{\prime}, x_{C}\right)} P(xAxC)=xAψAC(xA,xC)ψAC(xA,xC)
这个公式是条件概率的表达式,用于计算在已知变量 x C x_C xC 的条件下,变量 x A x_A xA 的概率分布 P ( x A ∣ x C ) P(x_A | x_C) P(xAxC)。这种表达式在统计模型和机器学习中非常常见,尤其是在概率图模型如贝叶斯网络和马尔可夫随机场中。下面是对公式中各部分的详细解释:

  1. P ( x A ∣ x C ) P(x_A | x_C) P(xAxC): 这是在给定 x C x_C xC 的条件下,变量 x A x_A xA 的条件概率。它描述了在已知某些信息(这里是 x C x_C xC)的情况下,变量 x A x_A xA 出现的概率。

  2. ψ A C ( x A , x C ) \psi_{AC}(x_A, x_C) ψAC(xA,xC): 这是一个局部函数或因子,它表示变量 x A x_A xA x C x_C xC 之间的相互作用或依赖关系。在概率图模型中,这些因子通常用于表示变量之间的邻接关系。

  3. 归一化求和: ∑ x A ψ A C ( x A ′ , x C ) \sum_{x_A} \psi_{AC}(x_A', x_C) xAψAC(xA,xC) 是对所有可能的 x A x_A xA 状态的 ψ A C \psi_{AC} ψAC 求和。这个求和作为分母,用于归一化 ψ A C \psi_{AC} ψAC,确保 x A x_A xA 在给定 x C x_C xC 的条件下的所有可能状态的概率之和为1,满足概率分布的要求。

  4. 分子和分母的关系: 分子 ψ A C ( x A , x C ) \psi_{AC}(x_A, x_C) ψAC(xA,xC) 表示在特定 x A x_A xA 和已知 x C x_C xC 状态下的联合概率的度量,而分母是对所有 x A x_A xA 可能状态的这种度量求和,确保了整个表达式是一个有效的概率分布。

这种条件概率的计算对于概率推断非常重要,它允许我们基于已知的证据或数据来预测和估计其他变量的概率分布。在实际应用中,这种计算可以用于模式识别、预测建模、决策制定等多种场景。在概率图模型的训练和推断过程中,这类计算通常是通过算法如信念传播(Belief Propagation)、变分推断或马尔可夫链蒙特卡洛(MCMC)方法来实现的。

式14.7

P ( x A , x B ∣ x C ) = P ( x A ∣ x C ) P ( x B ∣ x C ) P\left(x_{A}, x_{B} | x_{C}\right)=P\left(x_{A} | x_{C}\right) P\left(x_{B} | x_{C}\right) P(xA,xBxC)=P(xAxC)P(xBxC)
表达式表示在给定变量 x C x_C xC 的条件下,变量 x A x_A xA x B x_B xB 的联合条件概率。这个表达式基于条件独立性的假设,即假设在给定变量 x C x_C xC 的情况下,变量 x A x_A xA x B x_B xB 是相互独立的。换句话说,一旦我们考虑了 x C x_C xC 的信息, x A x_A xA x B x_B xB 之间没有额外的相互作用或依赖关系。

这个性质在概率论和统计建模中非常重要,因为它简化了多变量概率分布的计算。下面是对表达式中各部分的解释:

  • P ( x A , x B ∣ x C ) P(x_{A}, x_{B} | x_{C}) P(xA,xBxC):这是在给定 x C x_C xC 的条件下,变量 x A x_A xA x B x_B xB 的联合条件概率。

  • P ( x A ∣ x C ) P(x_{A} | x_{C}) P(xAxC):这是在给定 x C x_C xC 的条件下,变量 x A x_A xA 的条件概率。

  • P ( x B ∣ x C ) P(x_{B} | x_{C}) P(xBxC):这是在给定 x C x_C xC 的条件下,变量 x B x_B xB 的条件概率。

如果 x A x_A xA x B x_B xB 在给定 x C x_C xC 的条件下是条件独立的,那么它们的联合概率可以直接通过它们各自的条件概率的乘积来计算。这种分解在概率图模型中非常有用,特别是在构建和推断复杂系统时,因为它减少了计算的复杂性。

在机器学习应用中,这种条件独立性假设可以用于:

  • 简化模型:减少模型的复杂度,使得计算更加高效。
  • 特征工程:在构建预测模型时,识别和利用条件独立性可以减少特征空间的维度。
  • 因果推断:在某些情况下,条件独立性可以帮助确定变量之间的因果关系。

然而,值得注意的是,条件独立性是一个很强的假设,在实际应用中可能不总是成立。因此,在应用这种假设之前,通常需要对数据进行仔细的分析和验证。

式14.8

ψ Q ( x Q ) = e − H Q ( x Q ) \psi_{Q}\left(\mathbf{x}_{Q}\right)=e^{-H_{Q}\left(\mathbf{x}_{Q}\right)} ψQ(xQ)=eHQ(xQ)
在机器学习中,表达式 ψ Q ( x Q ) = e − H Q ( x Q ) \psi_{Q}(\mathbf{x}_{Q}) = e^{-H_{Q}(\mathbf{x}_{Q})} ψQ(xQ)=eHQ(xQ) 通常出现在概率图模型,特别是马尔可夫随机场(Markov Random Field, MRF)的背景下。这里的 ψ Q \psi_{Q} ψQ 是一个局部势函数,用于描述变量子集 x Q \mathbf{x}_{Q} xQ 之间的关系,而 H Q H_{Q} HQ 是一个实值函数,可以视为描述变量间相互作用的能量函数。在这种模型中,势函数 ψ Q \psi_{Q} ψQ 通常是非负的,并且用来量化变量之间的关系,其值越大表示该变量组合越有可能出现 。

在概率论和统计物理中, ψ Q \psi_{Q} ψQ 也可以被看作是与团 Q Q Q 对应的配分函数的局部函数,它通过指数函数 e − H Q ( x Q ) e^{-H_{Q}(\mathbf{x}_{Q})} eHQ(xQ) 来定义,其中 H Q H_{Q} HQ 可以包含变量对的相互作用项以及单个变量的项 。这种形式的函数在定义系统的联合概率分布时非常有用,因为它允许我们通过局部相互作用来表达整个系统的全局性质。

在实际应用中,精确计算归一化常数 Z Z Z 可能非常困难,但在许多任务中,我们并不需要 Z Z Z 的确切值。重要的是 ψ Q \psi_{Q} ψQ 函数能够正确地表示变量之间的关系,并且可以用来进行概率推断和决策 。

式14.9

H Q ( x Q ) = ∑ u , v ∈ Q , u ≠ v α u v x u x v + ∑ v ∈ Q β v x v H_{Q}\left(\mathbf{x}_{Q}\right)=\sum_{u, v \in Q, u \neq v} \alpha_{u v} x_{u} x_{v}+\sum_{v \in Q} \beta_{v} x_{v} HQ(xQ)=u,vQ,u=vαuvxuxv+vQβvxv

在机器学习,这个式子定义一了一个系统的哈密顿量 H Q H_Q HQ。特别是在涉及概率图模型的上下文中,系统的哈密顿量 H Q H_Q HQ 通常用于描述一组变量 x Q \mathbf{x}_Q xQ 的能量状态,这些变量可以代表系统的某种配置或状态。哈密顿量是统计物理中的一个概念,但在机器学习中,特别是在建模具有复杂相互作用的系统时,也会用到类似的概念。它描述了变量集合 x Q \mathbf{x}_{Q} xQ 的能量。这个哈密顿量通常用于Ising模型或其他类似的物理模型,以及机器学习中的概率图模型。
这个哈密顿量包含两部分:

  1. 成对相互作用项 ∑ u , v ∈ Q , u ≠ v α u v x u x v \sum_{u, v \in Q, u \neq v} \alpha_{u v} x_u x_v u,vQ,u=vαuvxuxv 表示变量对 ( x u , x v ) (x_u, x_v) (xu,xv) 之间的相互作用能量。每个 α u v \alpha_{u v} αuv 表示连接变量 x u x_u xu x v x_v xv 的相互作用的强度。如果 α u v \alpha_{u v} αuv 为正,那么 x u x_u xu x v x_v xv 倾向于取相同的值;如果为负,则倾向于取相反的值。

  2. 外部场项 ∑ v ∈ Q β v x v \sum_{v \in Q} \beta_v x_v vQβvxv 表示每个变量 x v x_v xv 与外部场的相互作用能量。每个 β v \beta_v βv 表示作用在变量 x v x_v xv 上的外部场的强度,影响单个变量 x v x_v xv 的状态。

下面是公式中各部分的详细解释:

  1. α u v \alpha_{u v} αuv:表示变量 x u x_u xu x v x_v xv 之间的相互作用强度。如果 α u v \alpha_{u v} αuv 为正,表示它们之间存在吸引作用,倾向于使 x u x_u xu x v x_v xv 同号;如果为负,则表示排斥作用,倾向于使它们异号。

  2. x u x_{u} xu x v x_{v} xv:表示模型中的变量,它们可以是二进制变量(如Ising模型中的自旋,取值为+1或-1),也可以是其他类型的变量。

  3. 第一个求和:计算所有不同的变量对 ( u , v ) (u, v) (u,v) 之间的相互作用。这个求和确保了模型考虑了所有可能的成对相互作用。

  4. β v \beta_{v} βv:表示作用在单个变量 x v x_v xv 上的外部场的强度。它影响单个变量 x v x_v xv 的状态。

  5. 第二个求和:计算所有变量 x v x_v xv 与外部场的相互作用。

整个哈密顿量 H Q H_{Q} HQ 描述了在给定状态 x Q \mathbf{x}_{Q} xQ 下的系统能量。在统计物理中,这个能量用于计算系统在热平衡状态下的概率分布。在机器学习中,特别是在概率图模型中,这个哈密顿量可以用来定义变量之间的联合概率分布,通常与玻尔兹曼分布相结合:

P ( x Q ) = 1 Z e − H Q ( x Q ) k T P(\mathbf{x}_{Q}) = \frac{1}{Z} e^{-\frac{H_{Q}(\mathbf{x}_{Q})}{kT}} P(xQ)=Z1ekTHQ(xQ)

其中, Z Z Z 是配分函数,用于归一化概率分布, k k k 是玻尔兹曼常数, T T T 是温度, e e e 是自然对数的底数。这种形式的概率分布有助于研究系统在不同温度和相互作用条件下的宏观行为和相变。

在机器学习中,哈密顿量 H Q H_Q HQ 可以用于不同类型的模型,例如:

  • Ising模型:在物理学中描述铁磁材料的相变,但在机器学习中,它可以用于建模具有二元特征的系统。
  • 条件随机场(CRF):在序列数据建模中,CRF使用哈密顿量来定义状态之间的能量,从而影响状态序列的概率。
  • 贝叶斯网络:在某些情况下,哈密顿量可以用来定义变量之间的条件依赖关系。

在实际应用中,哈密顿量中的参数(例如 α u v \alpha_{u v} αuv β v \beta_v βv)可以通过训练数据学习得到,以便模型能够捕捉到数据中的统计规律。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值