南瓜书公式详解------第十二章-1(泛化误差、经验误差、一些不等式、PAC学习)

式12.1(泛化误差)

E ( h ; D ) = P x ∼ D ( h ( x ) ≠ y ) E(h ; \mathcal{D})=P_{\boldsymbol{x} \sim \mathcal{D}}(h(\boldsymbol{x}) \neq y) E(h;D)=PxD(h(x)=y)
公式定义了模型 h h h 在数据集 D \mathcal{D} D 上的期望误差(Expected Error),也可以称为泛化误差。下面是公式中各部分的具体解释:

  • E ( h ; D ) E(h ; \mathcal{D}) E(h;D):模型 h h h 在数据集 D \mathcal{D} D 上的期望误差。
  • P x ∼ D P_{\boldsymbol{x} \sim \mathcal{D}} PxD:表示概率的符号,这里的 x \boldsymbol{x} x 是从数据分布 D \mathcal{D} D 中抽取的样本。
  • h ( x ) ≠ y h(\boldsymbol{x}) \neq y h(x)=y:模型 h h h 对样本 x \boldsymbol{x} x 的预测与真实标签 y y y 不同的情况。
  • D \mathcal{D} D:整个训练数据集或数据分布。

期望误差是模型在数据集上的平均错误率,可以通过以下步骤计算得出:

  1. 对于数据集中的每个样本 x \boldsymbol{x} x,计算模型 h h h 的预测 h ( x ) h(\boldsymbol{x}) h(x) 与真实标签 y y y 是否一致。
  2. 统计预测不一致(即错误)的样本数量。
  3. 将错误样本的数量除以总样本数,得到误差率。

期望误差是评估模型泛化能力的重要指标,它反映了模型在未知数据上可能表现如何。在实际应用中,为了估计模型的期望误差,我们通常使用独立的测试集或采用交叉验证的方法。

式12.2(经验误差)

E ^ ( h ; D ) = 1 m ∑ i = 1 m I ( h ( x i ) ≠ y i ) \widehat{E}(h ; D)=\frac{1}{m} \sum_{i=1}^{m} \mathbb{I}\left(h\left(\boldsymbol{x}_{i}\right) \neq y_{i}\right) E (h;D)=m1i=1mI(h(xi)=yi)
公式表示的是模型 h h h 在有限的数据集 D D D 上的经验误差(Empirical Error),也就是在该数据集上的近似误差估计。下面是公式中各部分的具体解释:

  • E ^ ( h ; D ) \widehat{E}(h ; D) E (h;D):模型 h h h 在数据集 D D D 上的经验误差。
  • m m m:数据集 D D D 中样本的总数。
  • ∑ i = 1 m \sum_{i=1}^{m} i=1m:对数据集中的所有样本求和。
  • I \mathbb{I} I:指示函数(Indicator Function),它是一个取0或1的函数:
    • 如果条件为真(即 h ( x i ) ≠ y i h(\boldsymbol{x}_{i}) \neq y_{i} h(xi)=yi), I \mathbb{I} I 取值为 1。
    • 如果条件为假(即 h ( x i ) = y i h(\boldsymbol{x}_{i}) = y_{i} h(xi)=yi), I \mathbb{I} I 取值为 0。
  • h ( x i ) h(\boldsymbol{x}_{i}) h(xi):模型 h h h 对第 i i i 个样本 x i \boldsymbol{x}_{i} xi 的预测。
  • y i y_{i} yi:第 i i i 个样本的真实标签。

经验误差是通过以下步骤计算得出:

  1. 对数据集中的每个样本 x i \boldsymbol{x}_{i} xi,计算模型 h h h 的预测 h ( x i ) h(\boldsymbol{x}_{i}) h(xi) 与真实标签 y i y_{i} yi 是否一致。
  2. 对于每个不一致的预测(即错误),指示函数 I \mathbb{I} I 为 1,否则为 0。
  3. 将所有的指示函数值求和,得到错误样本的总数。
  4. 将错误样本的总数除以总样本数 m m m,得到经验误差。

经验误差是评估模型在特定数据集上性能的一种快速方法,但它只反映了模型在训练数据上的表现,可能无法完全捕捉模型在未知数据上的泛化能力。为了更好地评估模型的泛化能力,通常需要在独立的测试集上计算经验误差。

式12.3(模型差异性)

d ( h 1 , h 2 ) = P x ∼ D ( h 1 ( x ) ≠ h 2 ( x ) ) d\left(h_{1}, h_{2}\right)=P_{\boldsymbol{x} \sim \mathcal{D}}\left(h_{1}(\boldsymbol{x}) \neq h_{2}(\boldsymbol{x})\right) d(h1,h2)=PxD(h1(x)=h2(x))
公式
d ( h 1 , h 2 ) = P x ∼ D ( h 1 ( x ) ≠ h 2 ( x ) ) d\left(h_{1}, h_{2}\right) = P_{\boldsymbol{x} \sim \mathcal{D}}\left(h_{1}(\boldsymbol{x}) \neq h_{2}(\boldsymbol{x})\right) d(h1,h2)=PxD(h1(x)=h2(x))

定义了两个假设(或模型) h 1 h_{1} h1 h 2 h_{2} h2 在数据分布 D \mathcal{D} D 上的不相似度(dissimilarity),也可以看作是它们之间的距离。下面是公式中各部分的具体解释:

  • d ( h 1 , h 2 ) d\left(h_{1}, h_{2}\right) d(h1,h2):模型 h 1 h_{1} h1 h 2 h_{2} h2 之间的不相似度度量。
  • P x ∼ D P_{\boldsymbol{x} \sim \mathcal{D}} PxD:表示概率的符号,这里的 x \boldsymbol{x} x 是从数据分布 D \mathcal{D} D 中抽取的样本。
  • h 1 ( x ) ≠ h 2 ( x ) h_{1}(\boldsymbol{x}) \neq h_{2}(\boldsymbol{x}) h1(x)=h2(x):模型 h 1 h_{1} h1 h 2 h_{2} h2 对样本 x \boldsymbol{x} x 的预测不一致的情况。

这个度量可以用于以下方面:

  1. 模型差异性:衡量两个模型在数据分布 D \mathcal{D} D 上预测差异的程度。

  2. 多样性:在集成学习中,如果希望模型之间具有多样性,这个度量可以用来评估模型的多样性。

  3. 比较分析:用于比较两个模型在特定数据分布上的性能差异。

  4. 集成方法:在某些集成方法中,这个度量可以用来确定如何组合不同的模型以获得最佳性能。

这个度量的范围是从 0 到 1,其中 0 表示两个模型在所有样本上的预测完全相同,而 1 表示它们的预测在所有样本上都不同。在实际应用中,这个度量可以用于选择模型集合中的成员,或者在模型训练过程中调整模型以增加多样性。

式12.4(詹森不等式)

f ( E ( x ) ) ⩽ E ( f ( x ) ) f(\mathbb{E}(x)) \leqslant \mathbb{E}(f(x)) f(E(x))E(f(x))
这个不等式表达了一个关于期望值和函数的属性,其中 f f f 是一个函数, x x x 是一个随机变量, E ( x ) \mathbb{E}(x) E(x) 是随机变量 x x x 的期望值(或数学期望), E ( f ( x ) ) \mathbb{E}(f(x)) E(f(x)) 是函数 f f f 作用于随机变量 x x x 后的期望值。这个性质在数学和统计学中非常重要,尤其是在处理不确定性和随机性时。

解释:

  • f ( E ( x ) ) f(\mathbb{E}(x)) f(E(x)):函数 f f f 作用于随机变量 x x x 的期望值的结果。

  • E ( f ( x ) ) \mathbb{E}(f(x)) E(f(x)):随机变量 x x x 的函数 f ( x ) f(x) f(x) 的期望值。

性质:

  • 如果函数 f f f 是凹函数(concave),那么上述不等式成立。凹函数的一个特点是,它在任何点的切线都位于函数图像的上方或恰好接触函数图像。

  • 这个性质是詹森不等式(Jensen’s Inequality)的一个特例,詹森不等式指出,对于凹函数,函数的期望值总是小于或等于函数在期望值处的值。

应用:

  • 这个性质在经济学、金融学、统计学和机器学习中有广泛应用,特别是在评估风险、优化问题和决策制定中。

  • 在机器学习中,这个性质可以用来分析模型的泛化能力,特别是在考虑模型输出的期望时。

注意:

  • 如果函数 f f f 是凸函数(convex),则上述不等式反向成立,即 f ( E ( x ) ) ⩾ E ( f ( x ) ) f(\mathbb{E}(x)) \geqslant \mathbb{E}(f(x)) f(E(x))E(f(x))

  • 这个性质依赖于函数 f f f 的特定性质,因此在具体应用中需要根据函数的具体形式来判断不等式是否成立。

式12.5(霍夫丁不等式)

P ( 1 m ∑ i = 1 m x i − 1 m ∑ i = 1 m E ( x i ) ⩾ ϵ ) ⩽ exp ⁡ ( − 2 m ϵ 2 ) P\left(\frac{1}{m} \sum_{i=1}^{m} x_{i}-\frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\left(x_{i}\right) \geqslant \epsilon\right) \leqslant \exp \left(-2 m \epsilon^{2}\right) P(m1i=1mxim1i=1mE(xi)ϵ)exp(2mϵ2)
这个不等式是概率论中著名的Hoeffding’s inequality(霍夫丁不等式)的一个形式,用于界定独立随机变量之和偏离其期望值的概率上界。下面是对不等式的详细解释:

  • P ( 1 m ∑ i = 1 m x i − 1 m ∑ i = 1 m E ( x i ) ⩾ ϵ ) P\left(\frac{1}{m} \sum_{i=1}^{m} x_{i}-\frac{1} {m} \sum_{i=1}^{m} \mathbb{E}\left(x_{i}\right) \geqslant \epsilon\right) P(m1i=1mxim1i=1mE(xi)ϵ):这是随机变量 x 1 , x 2 , … , x m x_1, x_2, \ldots, x_m x1,x2,,xm 之和的样本均值,与它们的期望值之和的样本均值之差大于或等于某个正数 ϵ \epsilon ϵ 的概率。

  • E ( x i ) \mathbb{E}\left(x_{i}\right) E(xi):随机变量 x i x_i xi 的期望值。

  • exp ⁡ ( − 2 m ϵ 2 ) \exp \left(-2 m \epsilon^{2}\right) exp(2mϵ2):这是上述概率的一个上界,其中 m m m 是随机变量的个数, ϵ \epsilon ϵ 是阈值。

霍夫丁不等式的这个形式说明,如果随机变量 x i x_i xi 之间相互独立,并且对于所有的 i i i x i x_i xi 的值被限制在区间 [a, b] 上,那么随机变量之和偏离其期望值的概率由 exp ⁡ ( − 2 m ϵ 2 ) \exp \left(-2 m \epsilon^{2}\right) exp(2mϵ2) 给出。这里的 m m m 是随机变量的总数, ϵ \epsilon ϵ 是偏离期望值的阈值。

这个不等式在统计学和机器学习中有广泛应用,特别是在:

  • 概率建模:评估随机变量偏离期望的程度。
  • 机器学习:分析模型在训练过程中的性能波动。
  • 风险管理:评估金融资产组合的潜在损失。

霍夫丁不等式提供了一种量化随机变量之和偏离期望值风险的方法,并且它不要求随机变量服从特定的分布,只要求它们是独立且有界的。这使得它在处理不确定性和随机性时非常实用。

式12.6(霍夫丁不等式2)

P ( ∣ 1 m ∑ i = 1 m x i − 1 m ∑ i = 1 m E ( x i ) ∣ ⩾ ϵ ) ⩽ 2 exp ⁡ ( − 2 m ϵ 2 ) P\left(\left\vert\frac{1}{m} \sum_{i=1}^{m} x_{i}-\frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\left(x_{i}\right)\right\vert \geqslant \epsilon\right) \leqslant 2 \exp \left(-2 m \epsilon^{2}\right) P( m1i=1mxim1i=1mE(xi) ϵ)2exp(2mϵ2)
这个不等式是霍夫丁不等式(Hoeffding’s Inequality)的另一个形式,用于评估独立同分布的随机变量之和的样本均值与其期望均值之差的累积分布函数(CDF)。具体来说,它提供了随机变量之和的样本均值偏离期望均值至少 ϵ \epsilon ϵ 的概率的上界。下面是对不等式中各部分的解释:

  • P ( ∣ 1 m ∑ i = 1 m x i − 1 m ∑ i = 1 m E ( x i ) ∣ ⩾ ϵ ) P\left(\left\vert\frac{1}{m} \sum_{i=1}^{m} x_{i}-\frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\left(x_{i}\right)\right\vert \geqslant \epsilon\right) P( m1i=1mxim1i=1mE(xi) ϵ):这是随机变量 x 1 , x 2 , … , x m x_1, x_2, \ldots, x_m x1,x2,,xm 之和的样本均值,与它们的期望值之和的样本均值之差的绝对值大于或等于某个正数 ϵ \epsilon ϵ 的概率。

  • E ( x i ) \mathbb{E}\left(x_{i}\right) E(xi):随机变量 x i x_i xi 的期望值。

  • 2 exp ⁡ ( − 2 m ϵ 2 ) 2 \exp \left(-2 m \epsilon^{2}\right) 2exp(2mϵ2):这是上述概率的上界。乘以2是因为使用了绝对值,所以需要同时考虑正偏差和负偏差的情况。

霍夫丁不等式的这个形式说明,如果随机变量 x i x_i xi 之间相互独立,并且对于所有的 i i i x i x_i xi 的值被限制在区间 [0, 1] 上(或者任何已知的区间 [a, b] 上,通过适当调整不等式),那么随机变量之和偏离其期望值的概率由 2 exp ⁡ ( − 2 m ϵ 2 ) 2 \exp \left(-2 m \epsilon^{2}\right) 2exp(2mϵ2) 给出。这里的 m m m 是随机变量的总数, ϵ \epsilon ϵ 是偏离期望值的阈值。

这个不等式在统计学和机器学习中有广泛应用,特别是在:

  • 概率建模:评估随机变量偏离期望的程度。
  • 机器学习:分析模型在训练过程中的性能波动。
  • 风险管理:评估金融资产组合的潜在损失。

霍夫丁不等式提供了一种量化随机变量之和偏离期望值风险的方法,并且它不要求随机变量服从特定的分布,只要求它们是独立且有界的。这使得它在处理不确定性和随机性时非常实用。

式12.7(霍夫丁不等式-3------McDiarmid不等式)

P ( f ( x 1 , … , x m ) − E ( f ( x 1 , … , x m ) ) ⩾ ϵ ) ⩽ exp ⁡ ( − 2 ϵ 2 ∑ i c i 2 ) P\left(f\left(x_{1}, \ldots, x_{m}\right)-\mathbb{E}\left(f\left(x_{1}, \ldots, x_{m}\right)\right) \geqslant \epsilon\right) \leqslant \exp \left(\frac{-2 \epsilon^{2}}{\sum_{i} c_{i}^{2}}\right) P(f(x1,,xm)E(f(x1,,xm))ϵ)exp(ici22ϵ2)
这个不等式是霍夫丁不等式(Hoeffding’s Inequality)的一种推广形式,用于评估一组独立随机变量的函数 f ( x 1 , … , x m ) f(x_1, \ldots, x_m) f(x1,,xm) 与其期望值 E ( f ( x 1 , … , x m ) ) \mathbb{E}(f(x_1, \ldots, x_m)) E(f(x1,,xm)) 之差的累积分布函数(CDF)。下面是对不等式中各部分的解释:

  • P ( f ( x 1 , … , x m ) − E ( f ( x 1 , … , x m ) ) ⩾ ϵ ) P\left(f\left(x_{1}, \ldots, x_{m}\right)-\mathbb{E}\left(f\left(x_{1}, \ldots, x_{m}\right)\right) \geqslant \epsilon\right) P(f(x1,,xm)E(f(x1,,xm))ϵ):这是函数 f f f 在随机变量 x 1 , … , x m x_1, \ldots, x_m x1,,xm 的影响下的结果与其期望值之差的绝对值大于或等于某个正数 ϵ \epsilon ϵ 的概率。

  • E ( f ( x 1 , … , x m ) ) \mathbb{E}\left(f\left(x_{1}, \ldots, x_{m}\right)\right) E(f(x1,,xm)):函数 f f f 在随机变量 x 1 , … , x m x_1, \ldots, x_m x1,,xm 上的期望值。

  • exp ⁡ ( − 2 ϵ 2 ∑ i c i 2 ) \exp \left(\frac{-2 \epsilon^{2}}{\sum_{i} c_{i}^{2}}\right) exp(ici22ϵ2):这是上述概率的上界。这里 c i c_i ci 是与 x i x_i xi 相关的某个量,通常是 x i x_i xi 影响函数 f f f 的程度的度量。

  • ∑ i c i 2 \sum_{i} c_{i}^{2} ici2:是所有 c i c_i ci 平方的和,作为分母,用于调整 ϵ \epsilon ϵ 的影响。

霍夫丁不等式的这个形式说明,如果随机变量 x i x_i xi 之间相互独立,并且对于所有的 i i i x i x_i xi 的值被限制在区间 ([-a_i, a_i]) 上,那么函数 f f f 的结果偏离其期望值的概率由 exp ⁡ ( − 2 ϵ 2 ∑ i c i 2 ) \exp \left(\frac{-2 \epsilon^{2}}{\sum_{i} c_{i}^{2}}\right) exp(ici22ϵ2) 给出。这里的 m m m 是随机变量的总数, ϵ \epsilon ϵ 是偏离期望值的阈值。

这个不等式在统计学和机器学习中有广泛应用,特别是在:

  • 概率建模:评估随机变量的函数偏离期望的程度。
  • 机器学习:分析模型在训练过程中的性能波动。
  • 风险管理:评估金融资产组合的潜在损失。

霍夫丁不等式提供了一种量化随机变量函数偏离期望值风险的方法,并且它不要求随机变量服从特定的分布,只要求它们是独立且有界的。这使得它在处理不确定性和随机性时非常实用。

式12.8(霍夫丁不等式-4)

P ( ∣ f ( x 1 , … , x m ) − E ( f ( x 1 , … , x m ) ) ∣ ⩾ ϵ ) ⩽ 2 exp ⁡ ( − 2 ϵ 2 ∑ i c i 2 ) P\left(\left|f\left(x_{1}, \ldots, x_{m}\right)-\mathbb{E}\left(f\left(x_{1}, \ldots, x_{m}\right)\right)\right| \geqslant \epsilon\right) \leqslant 2 \exp \left(\frac{-2 \epsilon^{2}}{\sum_{i} c_{i}^{2}}\right) P(f(x1,,xm)E(f(x1,,xm))ϵ)2exp(ici22ϵ2)
这个不等式是霍夫丁不等式的一个形式,用于评估随机变量 x 1 , … , x m x_1, \ldots, x_m x1,,xm 的某个函数 f f f 的值与其期望值之差的分布。具体来说,它提供了函数 f f f 的值偏离其期望值至少 ϵ \epsilon ϵ 的概率的上界。下面是对不等式中各部分的解释:

  • P ( ∣ f ( x 1 , … , x m ) − E ( f ( x 1 , … , x m ) ) ∣ ⩾ ϵ ) P\left(\left|f\left(x_{1}, \ldots, x_{m}\right)-\mathbb{E}\left(f\left(x_{1}, \ldots, x_{m}\right)\right)\right| \geqslant \epsilon\right) P(f(x1,,xm)E(f(x1,,xm))ϵ):这是函数 f f f 在随机变量 x 1 , … , x m x_1, \ldots, x_m x1,,xm 的影响下的结果与其期望值之差的绝对值大于或等于某个正数 ϵ \epsilon ϵ 的概率。

  • E ( f ( x 1 , … , x m ) ) \mathbb{E}\left(f\left(x_{1}, \ldots, x_{m}\right)\right) E(f(x1,,xm)):函数 f f f 在随机变量 x 1 , … , x m x_1, \ldots, x_m x1,,xm 上的期望值。

  • 2 exp ⁡ ( − 2 ϵ 2 ∑ i c i 2 ) 2 \exp \left(\frac{-2 \epsilon^{2}}{\sum_{i} c_{i}^{2}}\right) 2exp(ici22ϵ2):这是上述概率的上界。这里 c i c_i ci 是随机变量 x i x_i xi 对函数 f f f 的影响程度的度量,通常与 x i x_i xi 的变化范围有关。

  • ∑ i c i 2 \sum_{i} c_{i}^{2} ici2:是所有 c i c_i ci 平方的和,作为分母,用于调整 ϵ \epsilon ϵ 的影响。

霍夫丁不等式的这个形式说明,如果随机变量 x i x_i xi 之间相互独立,并且对于所有的 i i i x i x_i xi 的值被限制在区间 ([-a_i, a_i]) 上,那么函数 f f f 的结果偏离其期望值的概率由 2 exp ⁡ ( − 2 ϵ 2 ∑ i c i 2 ) 2 \exp \left(\frac{-2 \epsilon^{2}}{\sum_{i} c_{i}^{2}}\right) 2exp(ici22ϵ2) 给出。这里的 m m m 是随机变量的总数, ϵ \epsilon ϵ 是偏离期望值的阈值。

这个不等式在统计学和机器学习中有广泛应用,特别是在:

  • 概率建模:评估随机变量的函数偏离期望的程度。
  • 机器学习:分析模型在训练过程中的性能波动。
  • 风险管理:评估金融资产组合的潜在损失。

霍夫丁不等式提供了一种量化随机变量函数偏离期望值风险的方法,并且它不要求随机变量服从特定的分布,只要求它们是独立且有界的。这使得它在处理不确定性和随机性时非常实用。

12.9(PAC定义式)

P ( E ( h ) ≤ ϵ ) ≥ 1 − δ P(E(h)\le\epsilon)\ge 1-\delta P(E(h)ϵ)1δ
公式 在这里描述的是某个事件的概率,其中 E ( h ) E(h) E(h) 表示模型 h h h 的期望误差(expected error),而 ϵ \epsilon ϵ δ \delta δ 是两个非负实数。下面是对公式中各部分的解释:

  • E ( h ) E(h) E(h):模型 h h h 的期望误差,通常定义为模型预测与真实标签不一致的概率。
  • ϵ \epsilon ϵ:期望误差的阈值,一个事先确定的误差水平。
  • P ( E ( h ) ≤ ϵ ) P(E(h) \leq \epsilon) P(E(h)ϵ):模型 h h h 的期望误差小于或等于 ϵ \epsilon ϵ 的概率。
  • δ \delta δ:模型 h h h 的期望误差超过 ϵ \epsilon ϵ 的最大可接受概率。

这个不等式通常用于以下方面:

  1. 置信度:表示我们对于模型 h h h 的期望误差小于或等于 ϵ \epsilon ϵ 的信心水平。如果 δ \delta δ 很小,我们可以说对于模型的性能有很高的信心。

  2. 风险管理:在金融领域,这个不等式可以用来评估投资的风险水平,其中 ϵ \epsilon ϵ 可以是损失的阈值,而 δ \delta δ 是损失超过这个阈值的概率。

  3. 机器学习:在机器学习中,这个不等式可以用来评估模型的泛化能力,即模型在未知数据上的表现。

  4. 统计推断:在统计推断中,这个不等式可以用来构建置信区间或进行假设检验。

这个不等式是概率论和统计学中的一个基本概念,它帮助我们理解和量化模型或决策的风险和不确定性。在实际应用中,选择合适的 ϵ \epsilon ϵ δ \delta δ 取决于具体问题的需求和容忍度。

名词解释----PAC辨识

以上就是PAC的定义式, E ( h ) E(h) E(h)表示算法 L \mathcal{L} L在用观测集 D D D训练后输出的假设函数 h h h,它的泛化误差(见公式12.1)。这个概率定义指出,如果 h h h的泛化误差不大于 ϵ \epsilon ϵ的概率不小于 1 − δ 1-\delta 1δ,那么我们称学习算法 L \mathcal{L} L能从假设空间 H \mathcal{H} H中PAC辨识概念类 C \mathcal{C} C

Probably Approximately Correct (PAC) learning是一个理论框架,用于研究在给定误差率和置信度的情况下,训练一个可学习的分类器所需的样本数量。PAC学习理论定义了训练样本数量、误差率和获得所需误差率的概率之间的数学关系。在PAC学习中,我们使用一组训练样本来训练机器学习算法学习分类或回归模式,并计算各种指标来估计其性能,其中之一就是误差率。

PAC学习的核心是找到一个学习算法,该算法能够在给定的误差 ϵ \epsilon ϵ 和置信度 δ \delta δ 下,使用足够数量的训练样本来近似正确地学习目标概念。具体来说,如果一个概念类 C \mathcal{C} C 是PAC可学习的,那么存在一个学习算法 A A A,对于任意 ϵ > 0 \epsilon > 0 ϵ>0 δ > 0 \delta > 0 δ>0,当训练样本数量足够大时,算法 A A A 能够以至少 1 − δ 1-\delta 1δ 的概率输出一个假设 h h h,使得 h h h 的真实误差小于或等于 ϵ \epsilon ϵ

PAC学习的动机是,我们只能通过测试集来估计误差率,而这些估计由于其统计性质与实际值有所不同。因此,我们可能会问需要多少训练样本才能对我们的估计有信心。PAC理论提供了答案,它涉及找到真实误差率与训练样本数量之间的关系,并且还涉及我们可以确信我们估计正确的置信度。

在PAC学习中,"近似"意味着假设空间中的假设可以在训练数据上产生误差,但通过使用足够的训练数据,可以将误差率保持在较低水平。而"可能"则来源于概率,如果拥有超过某个数量的样本,我们可以将误差率降低到小于 ϵ \epsilon ϵ 的值。

PAC学习理论的一个重要结果是,一个概念类是PAC可学习的,当且仅当它具有有限的VC维数。VC维数是一个假设空间能够"粉碎"的最大点数,即对于任何的标记,都可以将这些点分开。具体来说,如果一个假设空间具有有限的VC维数,那么我们可以计算出学习所需的样本复杂度,使用VC维数来量化假设空间的能力。

此外,PAC学习理论还涉及到一个重要概念:一致性。一致性意味着与训练数据一致的假设集合,即假设在训练数据上的误差为零的集合。在这种情况下,我们不知道假设的真实误差,PAC学习的主要定理描述了训练样本数量、真实误差率和假设空间大小之间的关系。

在实际应用中,PAC学习理论提供了一种量化随机变量函数偏离期望值风险的方法,它不要求随机变量服从特定的分布,只要求它们是独立且有界的。这使得PAC学习理论在处理不确定性和随机性时非常实用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值