南瓜书公式详解--------第一章绪论(1个公式)

南瓜书公式详解--------第一章绪论
式(1.1)
E o t e ( L a ∣ X , f ) = ∑ h ∑ x ∈ X − X P ( x ) I ( h ( x ) ≠ f ( x ) ) P ( h ∣ X , L a ) E_{o t e}\left(\mathfrak{L}_{a} | X, f\right)=\sum_{h} \sum_{\boldsymbol{x} \in \mathcal{X}-X} P(\boldsymbol{x}) \mathbb{I}(h(\boldsymbol{x}) \neq f(\boldsymbol{x})) P\left(h | X, \mathfrak{L}_{a}\right) Eote(LaX,f)=hxXXP(x)I(h(x)=f(x))P(hX,La)
公式是关于一个特定的数学期望 E o t e E_{ote} Eote​ 的表达式,通常称为“离线期望”(Out-of-Time Expectation),在机器学习中,特别是在评估模型的泛化能力时使用。这个公式可能在讨论集成学习、强化学习或其他需要评估模型在未知数据上表现的场景中出现。下面是对公式的逐项解释:

  • E ote ( L a ∣ X , f ) E_{\text{ote}}(\mathfrak{L}_{a} | X, f) Eote(LaX,f):这是在给定数据集 $X $和模型 $f $的情况下,对于某个损失函数 L a \mathfrak{L}_{a} La的离线期望。

  • ∑ h \sum_{h} h:这是对所有可能的模型 h h h的求和。在某些情况下,$h $可能代表不同的策略或决策函数。

  • ∑ x ∈ X − X \sum_{\boldsymbol{x} \in \mathcal{X}-X} xXX:这是对所有不在数据集 $X $中的样本 $\boldsymbol{x} $的求和,其中 $\mathcal{X} $表示所有可能的样本空间。

  • P ( x ) P(\boldsymbol{x}) P(x):这是样本 x \boldsymbol{x} x在整个样本空间 $\mathcal{X} $中的概率分布。

  • I ( h ( x ) ≠ f ( x ) ) \mathbb{I}(h(\boldsymbol{x}) \neq f(\boldsymbol{x})) I(h(x)=f(x)):这是指示函数(Indicator Function),当 h ( x ) h(\boldsymbol{x}) h(x) f ( x ) f(\boldsymbol{x}) f(x)不相等时(即模型 h h h f f f对样本 x \boldsymbol{x} x的预测不一致时),其值为 1;否则为 0。

  • P ( h ∣ X , L a ) P(h | X, \mathfrak{L}_{a}) P(hX,La):这是在给定数据集 X X X和损失函数 L a \mathfrak{L}_{a} La的条件下,选择模型 h h h的概率。

整个公式的意思是,对于不在训练数据集 X X X 中的每个样本 x x x,计算所有可能的模型 h h h 和当前模型 f f f 在该样本上的预测不一致的概率,然后对所有这些概率进行加权求和,其中权重是样本 x x x 的概率分布 P ( x ) P(x) P(x) 和在给定数据集和损失函数下选择模型 h h h 的概率 P ( h ∣ X , L a ) P(h∣X,La) P(hX,La)。这个期望值可以用来评估模型 f f f 在未知数据上的泛化能力。

  • 14
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值